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Abstract
We present Qwen-Image, an image generation foundation model in the Qwen series
that achieves significant advances in complex text rendering and precise image editing.
To address the challenges of complex text rendering, we design a comprehensive data
pipeline that includes large-scale data collection, filtering, annotation, synthesis, and
balancing. Moreover, we adopt a progressive training strategy that starts with non-
text-to-text rendering, evolves from simple to complex textual inputs, and gradually
scales up to paragraph-level descriptions. This curriculum learning approach substan-
tially enhances the model’s native text rendering capabilities. As a result, Qwen-Image
not only performs exceptionally well in alphabetic languages such as English, but also
achieves remarkable progress on more challenging logographic languages like Chinese.
To enhance image editing consistency, we introduce an improved multi-task training
paradigm that incorporates not only traditional text-to-image (T2I) and text-image-to-
image (TI2I) tasks but also image-to-image (I2I) reconstruction, effectively aligning the
latent representations between Qwen2.5-VL and MMDiT. Furthermore, we separately
feed the original image into Qwen2.5-VL and the VAE encoder to obtain semantic and
reconstructive representations, respectively. This dual-encoding mechanism enables
the editing module to strike a balance between preserving semantic consistency and
maintaining visual fidelity. We present a comprehensive evaluation of Qwen-Image
across multiple public benchmarks, including GenEval, DPG, and OneIG-Bench for
general image generation, as well as GEdit, ImgEdit, and GSO for image editing. Qwen-
Image achieves state-of-the-art performance, demonstrating its strong capabilities in
both image generation and editing. Furthermore, results on LongText-Bench, Chine-
seWord, and CVTG-2K show that it excels in text rendering—particularly in Chinese
text generation—outperforming existing state-of-the-art models by a significant margin.
This highlights Qwen-Image’s unique position as a leading image generation model that
combines broad general capability with exceptional text rendering precision.
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Figure 1: Qwen-Image exhibits strong general capabilities in both image generation and editing, while
demonstrating exceptional capability in text rendering, especially Chinese.
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Figure 2: Showcase of Qwen-Image in complex text rendering, including multi-line layouts, paragraph-
level semantics, and fine-grained details. Qwen-Image supports both alphabetic languages (e.g., English)
and logographic languages (e.g., Chinese) with high fidelity.
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Figure 3: Showcase of Qwen-Image in general image generation, supporting diverse artistic styles.
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Figure 4: Showcase of Qwen-Image in general image editing, including style transfer, text editing,
background change, object addition, removal, and replacement, pose manipulation, and more.
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Figure 5: Showcase of Qwen-Image in general image understanding tasks, including detection, segmen-
tation, depth/canny estimation, novel view synthesis, and super resolution—tasks that can all be viewed
as specialized forms of image editing.
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1 Introduction

Image generation models—encompassing both text-to-image generation (T2I) (Rombach et al., 2021;
Wu et al., 2022; Liang et al., 2022; OpenAI, 2023; Podell et al., 2023; Chen et al., 2024c; Li et al., 2024b;
Esser et al., 2024; BlackForest, 2024; Gao et al., 2025; Gong et al., 2025; Cai et al., 2025) and image editing
(TI2I) (Brooks et al., 2023; Zhang et al., 2023; Wang et al., 2025; Deng et al., 2025; Labs et al., 2025; Wu
et al., 2025b; Liu et al., 2025b; Cai et al., 2025; OpenAI, 2025)—have emerged as a fundamental component
of modern artificial intelligence, enabling machines to synthesize or modify visually compelling and
semantically coherent content from text prompts. Over the past few years, remarkable progress has been
achieved in this domain, particularly with the advent of diffusion-based architectures (Ho et al., 2020; Liu
et al., 2022) that enable high-resolution image generation while capturing fine-grained semantic details.

Despite these advances, two critical challenges persist. First, for text-to-image generation, aligning model
outputs with complex, multifaceted prompts remains a significant hurdle. Our evaluation reveals that
even state-of-the-art commercial models such as GPT Image 1 (OpenAI, 2025) and Seedream 3.0 (Gao
et al., 2025) struggle when faced with tasks requiring multi-line text rendering, non-alphabetic languages
rendering (e.g., Chinese), localized text insertions, or seamless integration of text and visual elements.
Second, for image editing, achieving precise alignment between the edited output and the original
image poses dual challenges: (i) visual consistency, where only targeted regions should be modified
while preserving all other visual details (e.g., changing hair color without altering facial details) and (ii)
semantic coherence, where global semantics must be preserved during structural changes (e.g., modifying
a person’s pose while maintaining identity and scene coherence).

In this work, we introduce Qwen-Image, a novel image generation model within the Qwen series,
designed to overcome these challenges through comprehensive data engineering, progressive learning
strategies, enhanced multi-task training paradigms, and scalable infrastructure optimization.

To address the challenge of complex prompt alignment, we develop a robust data pipeline encompassing
large-scale collection, annotation, filtering, synthetic augmentation, and class balancing. We further adopt
a curriculum learning strategy, starting from basic text rendering tasks and progressively advancing to
paragraph-level and layout-sensitive descriptions. This approach significantly enhances the model’s
ability to follow diverse languages, especially logographic languages like Chinese.

To address the challenge of image alignment, we propose an enhanced multi-task learning framework that
seamlessly integrates T2I,I2I and TI2I objectives within a shared latent space. Specifically, the input image
is encoded into two distinct yet complementary feature representations: semantic features are extracted
via Qwen-VL (Bai et al., 2025), capturing high-level scene understanding and contextual meaning, while
reconstructive features are obtained through the VAE encoder, preserving low-level visual details. Both
sets of features are then jointly fed into the MMDiT architecture (Esser et al., 2024) as conditioning signals.
This dual-conditioning design enables the model to simultaneously maintain semantic coherence and
visual consistency.

To ensure training efficiency and stability at scale, we design a Producer-Consumer framework leveraging
TensorPipe for distributed data loading and preprocessing. The Producer handles preprocessing tasks
such as VAE encoding and data I/O, while the Consumer focuses on distributed model training using
the Megatron (Shoeybi et al., 2019) framework. We also implement extensive monitoring tools to ensure
reliable convergence and debugging capabilities throughout large-scale training.

Qwen-Image demonstrates significant advances in both generating high-quality images from complex
textual prompts and performing accurate, context-aware image editing. The model is capable of inter-
preting intricate linguistic structures and producing visually compelling outputs that align with both
semantic intent and visual constraints. To validate its effectiveness, we evaluate Qwen-Image across a
diverse set of tasks, including text-to-image generation and image editing.

The key contributions of Qwen-Image can be summarized as follows:

• Superior Text Rendering: Qwen-Image excels at complex text rendering, including multi-
line layouts, paragraph-level semantics, and fine-grained details. It supports both alphabetic
languages (e.g., English) and logographic languages (e.g., Chinese) with high fidelity.

• Consistent Image Editing: Through our enhanced multi-task training paradigm, Qwen-Image
achieves exceptional performance in preserving both semantic meaning and visual realism
during editing operations.

• Strong Cross-Benchmark Performance: Evaluated on multiple benchmarks, Qwen-Image con-
sistently outperforms existing models across diverse generation and editing tasks, establishing a
strong foundation model for image generation.

6



Qwen2.5 VL

Noise

Patchify

System prompt User prompt

MMDiT Block

MMDiT Block… ×N

VAE Encoder

⊕

Three tall coconut trees, two of which
are located in the center of the picture
and one on the right edge. Two of the
coconut trees are covered in golden
coconut fruits under a clear blue sky,
presenting a peaceful and tropical
natural scene.

UnPatchify

! ! " #

Linear

MS-RoPE

Norm
Scale & Shift

QK-Norm

#! "! " #
Self-Attention

⊕

⊕

MLP

"

Norm
Scale & Shift

Gate

MLP
Gate

⊕

⊕

Norm
Scale & Shift

Gate

MLP
Gate

Norm
Scale & Shift

Linear

! " #

MS-RoPE
QK-Norm

Figure 6: Overview of the Qwen-Image architecture. It adopts a standard double-stream MMDiT
architecture. The input representations are provided by a frozen Qwen2.5-VL and a VAE encoder. The
model employs RMSNorm (Zhang &Sennrich, 2019) for QK-Norm, while all other normalization layers
use LayerNorm. Additionally, we design a new positional encoding scheme, MSRoPE (Multimodal
Scalable RoPE), to jointly encode positional information for both image and text modalities.

2 Model

In this section, we present the architectural design of the Qwen-Image model, along with a comprehensive
overview of the training data and training details.

2.1 Model Architecture

As shown in Figure 6, the Qwen-Image architecture is built upon three core components that work in con-
cert to enable high-fidelity text-to-image generation. First, a Multimodal Large Language Model (MLLM)
serves as the condition encoder, responsible extracting feature from textual inputs. Second, a Variational
AutoEncoder (VAE) acts as the image tokenizer, compressing input images into compact latent represen-
tations and decoding them back during inference. Third, a Multimodal Diffusion Transformer (MMDiT)
functions as the backbone diffusion model, modeling the complex joint distribution between noise and
image latents under text guidance. While this section outlines their general roles, the specific model
choices and architectural details are elaborated in the following sections.

2.2 Multimodal Large Language Model

Qwen-Image employs the Qwen2.5-VL model (Bai et al., 2025) as the feature extraction module for textual
inputs, owing to three key reasons: (1) The language and visual spaces of Qwen2.5-VL have already
been aligned, which makes it more suitable for text-to-image tasks compared to language-based models
like Qwen3 (Yang et al., 2025); (2) Qwen2.5-VL retains strong language modeling capabilities, without
significant degradation compared to language models; (3) Qwen2.5-VL supports multimodal inputs,
thereby enabling Qwen-Image to unlock a broader range of functionalities, e.g., image editing (Labs
et al., 2025). Let x and y denote the image and textual inputs, respectively. Given the user inputs, such as
prompts and images, we adopt the Qwen2.5-VL model to extract features. To better guide the model in
generating the refined representation latent, while accounting for the varying input modalities across
different tasks, we design distinct system prompts tailored for pure text input and text-and-image input,
respectively. We illustrate the system template in Figure 7 and Figure 15. Finally, we utilize the latent of
the last layer’s hidden state from Qwen2.5-VL language model backbone as the representation of the
user input.
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System Prompt for T2I task

<|im_start|>system
Describe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of
the objects and background: <|im_end|>
<|im_start|>user
<|user_text|><|im_end|>
<|im_start|>assistant

Figure 7: System prompt for Text-to-Image generation task, where <|user_text|> is the user input prompt.

2.3 Variational AutoEncoder

A strong VAE representation is crucial for building a powerful image foundation model. Current image
foundation models typically train an image VAE with 2D convolutions on massive image datasets to
obtain a high-quality image representation. In contrast, our work aims to develop a more general visual
representation compatible with both images and videos. However, existing joint image-video VAEs, such
as Wan-2.1-VAE (Wan et al., 2025), typically suffer a performance trade-off that results in degraded image
reconstruction capabilities. To this end, we leverage a single-encoder, dual-decoder architecture. This
design utilizes a shared encoder compatible with both images and videos, alongside separate, specialized
decoders for each modality, which enables our image foundation model to serve as a backbone for future
video models. Specifically, we adopt the architecture of Wan-2.1-VAE, freeze its encoder, and exclusively
fine-tune the image decoder.

To enhance reconstruction fidelity, particularly for small texts and fine-grained details, we train the
decoder on an in-house corpus of text-rich images. The dataset consists of real-world documents (PDFs,
PowerPoint slides, posters) alongside synthetic paragraphs, covering both alphabetic (e.g., English) and
logographic (e.g., Chinese) languages. During training, we observe that: (1) Balancing reconstruction
loss with perceptual loss effectively reduces grid artifacts, which are often observed in repetitive textures
like bushes. (2) As reconstruction quality increases, adversarial loss becomes ineffective because the
discriminator is unable to provide effective guidance. Based on these observations, we use only recon-
struction and perceptual losses, dynamically adjusting their ratio during fine-tuning. Interestingly, we
find that finetuning only the decoder can effectively enhance details and improve the rendering of small
text, thereby building a solid foundation for Qwen-Image’s text rendering abilities. Quantitative and
qualitative results are presented in Section 5.2.1.

2.4 Multimodal Diffusion Transformer

Qwen-Image adopts Multimodal Diffusion Transformer (MMDiT) (Esser et al., 2024) to jointly model text
and images. This approach has proven effective in a range of works, such as the FLUX (BlackForest, 2024;
Labs et al., 2025) series and the Seedream (Gong et al., 2025; Gao et al., 2025) series.

Within each block, we introduce a novel positional encoding method: Multimodal Scalable RoPE (MSRoPE).
As illustrated in Figure 8, we compare various text-image joint positional encoding strategies. In the
traditional MMDiT block, text tokens are directly concatenated after the flattened image positional
embeddings. Furthermore, Seedream 3.0 (Gao et al., 2025) introduces Scaling RoPE, where the image po-
sitional encoding is shifted to the central region of the image, and text tokens are considered as 2D tokens
with a shape of [1, L]. Then, 2D RoPE (Heo et al., 2024) is used for image-text joint positional encoding.
Although this adjustment facilitates resolution scale training, certain rows of positional encodings for
text and image, e.g., the 0-th middle row in Figure 8 (B), become isomorphic, making it harder for the
model to distinguish between text tokens and the image latent tokens in the 0-th middle row. Yet, it is
also non-trivial to determine an appropriate image row to concatenate the text tokens. To address the
aforementioned challenges, we introduce Multimodal Scalable RoPE (MSRoPE). In this approach, text
inputs are treated as 2D tensors with identical position IDs applied across both dimensions. As depicted
in Figure 8 (C), the text is conceptualized as being concatenated along the diagonal of the image. This
design allows MSRoPE to leverage resolution scaling advantages on the image side while maintaining
functional equivalence to 1D-RoPE on the text side, thereby obviating the need to determine the optimal
positional encoding for text. We show the architecture and configuration of Qwen-Image in Table 1.
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Figure 8: Comparison of different image-text joint positional encoding strategies. We design the Mul-
timodal Scalable RoPE (MSRoPE) strategy, which starts encoding from the image center and positions
textual encodings along the diagonal of the grid, enabling better image resolution scaling and improved
text-image alignment.

Table 1: Configuration of Qwen-Image architecture.

Configuration VLM VAE MMDiT
ViT LLM Enc Dec

# Layers 32 28 11 15 60
# Num Heads (Q / KV) 16 / 16 28 / 4 - - 24 / 24
Head Size 80 128 - - 128
Intermediate Size 3,456 18,944 - - 12,288
Patch / Scale Factor 14 - 8x8 8x8 2
Channel Size - - 16 16 -

# Parameters 7B 54M 73M 20B

3 Data

3.1 Data Collection

We systematically collected and annotated billions of image-text pairs to support the training of our
image generation model. Rather than focusing solely on the scale of raw dataset, we prioritize data
quality and balanced data distribution, aiming to construct a well-balanced and representative dataset
that closely mirrors real-world scenarios. As illustrated in Figure 9, the dataset is organized into four
primary domains: Nature, Design, People and Synthetic Data.

Among these categories, Nature category constitutes the largest proportion, accounting for approximately
55% of the dataset. This category includes diverse subcategories such as Objects, Landscape, Cityscape,
Plants, Animals, Indoor, and Food categories. Additionally, content that does not clearly belong to
the People or Design categories is also classified under Nature category. This broad, general-purpose
category serves as a crucial foundation for improving the model’s ability to generate realistic and diverse
natural images.

The second largest category is the Design category, comprising around 27% of the dataset. It primarily
includes structured visual content such as Posters, User Interfaces, and Presentation Slides, as well as
various forms of art including paintings, sculptures, art crafts, and digital arts. These types of data often
contain rich textual elements, complex layouts, and design-specific visual semantics. This category is
particularly important for enhancing the model’s capabilities in following intricate prompts about artistic
styles, text rendering, and layout design.

Next, the People category makes up about 13% of the dataset, encompassing subcategories such as Portrait,
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Figure 9: Overview of Data Collection. The dataset includes four main categories: Nature (general-
purpose generation), People (human-centric generation), Design (artistic styles, text rendering, and
complex layouts), and Synthetic Data (text rendering enhancement). Our collection strategy balances
diversity and quality while training, ensuring broad coverage and high-fidelity annotations to support
robust model training.

Sports, and Human Activities. It comprises a wide range of human-related images, including Portrait,
Sports, Activities, and so on. This category is essential for improving the model’s ability to generate
realistic and diverse human images, to ensure satisfactory user experiences and practical applicability.

Finally, the Synthetic Data category accounts for approximately 5% of the dataset. It is important to
clarify that the synthetic data discussed here does not include images generated by other AI models, but
rather data synthesized through controlled text rendering techniques (described in §§ 3.4). This excludes
images synthesized by other AI models, which often introduce significant risks such as visual artifacts,
text distortions, biases, and hallucinations. We adopt a conservative stance toward such data, as training
on low-fidelity or misleading images may weaken the model’s generalization capabilities and undermine
its reliability.

3.2 Data Filtering

To curate high-quality training data throughout the iterative development of our image generation model,
we propose a multi-stage filtering pipeline comprising seven sequential stages, as depicted in Figure 10.
These stages are progressively applied throughout the training process, with data distributions contin-
uously refined over time. Notably, synthetic data are introduced from Stage 4, when the foundational
model has reached a certain level of stability. The following section presents a comprehensive description
of each stage.

Stage 1: Initial Pre-training Data Curation At this early stage, the model is trained on images resized
to 256p (256×256 pixels with various aspect ratios including 1:1, 2:3, 3:2, 3:4, 4:3, 9:16, 16:9, 1:3 and 3:1).
To improve data quality, a series of filters are applied to remove low-quality or irrelevant images. The
Broken Files Filter identifies and discards corrupted or partially damaged files (e.g., truncated images),
many of which are also associated with abnormally small file sizes, as detected by the File Size Filter.
The Resolution Filter removes images with original resolutions below 256p. The Deduplication Filter
eliminates duplicate or near-duplicate image-text pairs. Furthermore, the NSFW Filter is applied to
exclude content containing sexual, violent, or other offensive material.

Stage 2: Image Quality Enhancement In this stage, we focus on systematically improving the image
quality of the dataset. The Rotation Filter removes images with significant rotation or flipping, as

10



Figure 10: Overview of the multi-stage data filtering pipeline. Our filtering strategy consists of seven
sequential stages (S1–S7), each targeting specific aspects of data quality, alignment, and diversity. From
initial pre-training data curation to high-resolution refinement and multi-scale training, the pipeline
progressively improves dataset quality while maintaining semantic richness and distributional stability.

indicated by the EXIF metadata. The Clarity Filter discards blurry or out-of-focus images, ensuring that
only sharp and clear images are retained. The Luma Filter excludes images that are excessively bright
or dark, while the Saturation Filter eliminates images with unnaturally high color saturation, which
often suggests artificial rendering or unrealistic digital manipulations. Furthermore, the Entropy Filter
identifies and removes images with significantly low entropy, typically characterized by large uniform
regions or minimal visual content. Finally, the Texture Filter is employed to discard images with overly
complex textures, which are often associated with noise or non-semantic patterns. Figure 11 illustrates
some examples of the filtering operators used in this stage.

Stage 3: Image-Text Alignment Improvement This stage focuses on improving the alignment between
textual descriptions and visual content. To balance the training data distribution, the dataset is divided
into three splits based on the source of captions: Raw Caption Split, Recaption Split, and Fused Caption
Split. Raw Caption Split includes captions provided by websites as well as metadata such as titles or tags
originally associated with the images. Although raw captions may introduce noise, they contribute to the
model’s robustness in handling short text inputs and serve as a vital source of real-world knowledge (e.g.,
plant names, cartoon IPs) often absent in datasets with synthesized captions. Recaption Split consists of
captions generated by the most advanced Qwen-VL Captioner (Bai et al., 2025), which provides more
descriptive and structured annotations. Due to model limitations, not all IPs can be accurately identified.
Fused Caption Split combines both raw captions and synthesized captions, offering a blend of general
knowledge and detailed descriptions. To further improve alignment, we applied both the Chinese
CLIP (Yang et al., 2022) Filter and the SigLIP 2 (Tschannen et al., 2025) Filter to remove mismatched
image-text pairs from the Raw Caption Split. Additionally, a Token Length Filter was employed to
eliminate excessively long captions, and the Invalid Caption Filter discards captions with abnormal
content, such as “Sorry, I cannot provide a caption for this image.”.

Stage 4: Text Rendering Enhancement In this stage, we focus on improving the model’s capability in
rendering text within images, which is crucial for generating images with high textual fidelity. To this
end, we categorize the dataset based on the presence and language of text within images. Specifically, the
dataset from Stage 3 is divided into four splits: English Split, Chinese Split, Other Language Split, and
Non-Text Split, to ensure balanced training across different linguistic contexts. To address challenges
such as low-frequency characters, mixed-language scenarios, and font diversity, we incorporate synthetic
text rendering data, which are generated using the strategies described in §§ 3.4. Moreover, the Intensive
Text Filter and the Small Character Filter are applied to remove images with overly dense or excessively
small text, as such cases are challenging to annotate accurately and difficult to render legibly.

11
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Figure 11: Examples of some filtering operators used in our pipeline. Extreme values in these operators
often indicate atypical or low-quality images. For instance, images with excessively high Luma score
typically contain large areas of white or overexposed regions.

Stage 5: High-Resolution Refinement In this stage, the model transitions to training with images at
640p resolution, accompanied by further dataset refinement to ensure both high quality and aesthetic
appeal. The Image Quality Filter is applied to eliminate images with quality defects such as overexposure,
underexposure, blur, or compression artifacts. The Resolution Filter ensures that all images meet the
minimum resolution requirements. The Aesthetic Filter is employed to exclude images with poor compo-
sition or visual appeal. Finally, the Abnormal Element Filter removes images containing watermarks, QR
codes, barcodes, or other elements that can interfere with viewing.

Stage 6: Category Balance and Portrait Augmentation After identifying underperformed categories
through careful error analysis, this stage involves recategorizing the dataset into three primary categories:
General, Portrait, Text Rendering, to facilitate category-based rebalancing during training. Keyword-
based retrieval and image retrieval techniques are employed to augment the dataset with targeted patches,
to enhance coverage of underrepresented categories. To further improve the model’s ability to generate
high-quality portraits, we first retrieve photorealistic portraits, cartoon characters, and celebrity images
from the People category. Synthesized captions are then generated to emphasize character-specific details,
such as facial features, expressions, and clothing, as well as contextual elements such as background,
lighting, and mood. This approach aims to enhance both the quality of generated images and the model’s
instruction-following capability. Additional filters are applied to remove images with face mosaics or
blurs, to avoid potential privacy issues and ensure the model’s robustness in handling human subjects.

Stage 7: Balanced Multi-Scale Training In the final stage, the model is trained jointly on images with
resolutions of 640p and 1328p. Imposing a strict resolution threshold of 1328p would lead to significant
data loss and distort the underlying data distribution. To improve training efficiency and ensure balanced
data distribution, we design a hierarchical taxonomy system for image categorization, inspired by
the design principles of WordNet (Miller, 1995). All images in Stage 6 are classified according to this
hierarchical taxonomy. Within each category, we retain only images with the highest quality and aesthetic
appeal. Furthermore, a specialized resampling strategy is employed to balance data containing text
rendering, addressing the long-tail distribution of token frequencies. Such balanced multi-scale training
allows the model to retain previously learned general knowledge and ensure stable convergence while
adapting to higher-resolution inputs, thereby improving detail generation without sacrificing robustness.
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Qwen-Image Annotation Prompt

# Image Annotator
You are a professional image annotator. Please complete the following tasks based on the input image.

## Step 1: Create Image Caption
1. Write the caption using natural, descriptive text without structured formats or rich text.
2. Enrich caption details by including: object attributes, vision relations between objects, and
environmental details.
3. Identify the text visible in the image, without translation or explanation, and highlight
it in the caption with quotation marks.
3. Maintain authenticity and accuracy, avoid generalizations.

## Step 2: Image Quality Assessment
1. Image Type Identification: Return the image type based on its source and usage.
2. Image Style Identification: Return the image style based on its overall visual characteristics.
3. Watermark Detection: Detect watermarks in the image. Return the detected watermarks in a list format.
4. Abnormal Element Detection: Check if any elements affect viewing, such as QR codes or mosaics.

## Sample Output Format
```json
{

"Caption": "...",
"Image Type": "...",
"Image Style": "...",
"Watermark List": [],
"Abnormal Element": "yes/no",

}
```

Figure 12: Example of the annotation prompt used in Qwen-Image.

3.3 Data Annotation

In our data annotation pipeline, we utilize a capable image captioner (e.g., Qwen2.5-VL) to generate
not only comprehensive image descriptions, but also structured metadata that captures essential image
properties and quality attributes.

Instead of treating captioning and metadata extraction as independent tasks, we designed an annota-
tion framework in which the captioner concurrently describes visual content and generates detailed
information in a structured format, such as JSON. Critical details such as object attributes, spatial rela-
tionships, environmental context, and verbatim transcriptions of visible text are captured in the caption,
while key image properties like type, style, presence of watermarks, and abnormal elements (e.g., QR
codes or facial mosaics) are reported in a structured format. With the help of advanced captioner, this
methodology transcends traditional image captioning and generate both detailed image descriptions and
structured metadata in a single pass, as shown in Figure 12. The annotation pipeline is designed to be
efficient and scalable, allowing us to process large-scale datasets without relying on additional models or
post-processing steps. In practice, we further refine the above pipeline by integrating initial annotations
with expert rules and lightweight classification models for critical tasks, such as watermark verification
and content filtering.

Overall, our pipeline not only provides deep insights into image content, but also supports advanced
data curation, providing a solid foundation for training robust and reliable image generation models.

3.4 Data Synthesis

Given the long-tail distribution of textual content in real-world images, particularly for non-Latin
languages such as Chinese, where numerous characters exhibit extremely low frequency, relying solely
on naturally occurring text is insufficient to ensure adequate exposure to these rare characters during
model training. To address this challenge and improve the robustness of text rendering across diverse
contexts, we propose a multi-stage text-aware image synthesis pipeline. This pipeline integrates three
complementary strategies: Pure Rendering, Compositional Rendering, and Complex Rendering. The
details of each strategy are elaborated below.
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Pure Rendering in Simple Backgrounds

“他用两手攀着上面，
两脚再向上缩；他肥胖
的身子向左微倾，显出
努力的样子。这时我看
见他的背影，我的泪很
快地流下来了。”

“I love 
you too”

招聘流程肆

壹

肆

叁

贰

在此输入内容

在此输入内容

在此输入内容

在此输入内容

游子吟游

慈

意

临

游

慈母手中线

游子身上衣

临行密密缝

意恐迟迟归

On a <background_color> background, 
displaying <word_color> text "<word>".

The background is <background_color>, and the 
<word_color> handwritten text is "<word>".

Template1

Template2

…

Pre-defined Templates

,

On a dark green background, 
displaying white text "他
用两手攀着上面，两脚再向上缩；
他肥胖的身子向左微倾，显出努
力的样子。这时我看见他的背影，
我的泪很快地流下来了。".

Compositional Rendering in Contextual Scenes

,

In the center-left of the image, there 
is a crumpled piece of paper with 
the handwritten message in black 
ink: "I love you too." The 
background shows an outdoor scene 
with a green lawn and a gray, cloudy 
sky, as if it's about to rain.

Complex Rendering in Structured Frames

Corpus

Qwen-VL

Captioner

图像顶部居中位置有文字“游子吟”。左侧
有一个白色灯笼，灯笼上有红色的装饰
线条和图案。右侧从上到下有四个蓝色
圆形图标，图标内依次为汉字“慈”、“游”、
“临”、“意”，并配有对应的诗句：“慈母手
中线”、“游子身上衣”、“临行密密缝”、
“意恐迟迟归”。,

Qwen-VL

Captioner

Figure 13: Overview of Data Synthesis. We designed three rendering strategies—Pure Rendering,
Compositional Rendering , and Complex Rendering —to generate text-only data, text-in-context data,
and complex-layout data, respectively.

Pure Rendering in Simple Backgrounds This strategy represents the most straightforward and effective
method for training the model to recognize and generate characters (e.g., English and Chinese characters).
Text paragraphs are extracted from large-scale high-quality corpora and rendered onto clean backgrounds
using dynamic layout algorithms that adapt font size and spacing based on canvas size. To ensure
high-quality synthesized samples, a rigorous quality control mechanism is employed: if any character
within a paragraph cannot be rendered due to limitations (e.g., font unavailability or rendering errors),
the entire paragraph is discarded. This strict filtering guarantees that only fully valid and legible samples
are included in the training dataset, thereby maintaining high fidelity in character-level text rendering.

Compositional Rendering in Contextual Scenes This strategy focuses on embedding synthetic text
into realistic visual contexts, mimicking its appearance in everyday environments. Text is simulated
as being written or printed onto various physical media, such as paper or wooden boards, and then
seamlessly composited into diverse background images to create visually coherent scenes. We employ the
Qwen-VL Captioner to generate descriptive captions for each synthesized image, capturing contextual
relationships between the text and its surrounding visual elements. This approach significantly improves
the model’s ability to comprehend and generate text within real-world scenarios.

Complex Rendering in Structured Templates To improve the model’s capacity to follow complex,
structured prompts involving layout-sensitive content, we propose a synthesis strategy based on pro-
grammatic editing of pre-defined templates, such as PowerPoint slides or User Interface Mockups. A
comprehensive rule-based system is designed to automate the substitution of placeholder text while
maintaining the integrity of layout structure, alignment, and formatting. These synthetic examples
are crucial for helping model understand and execute detailed instructions that involve multi-line text
rendering, precise spatial layouts, and control over text font and color.

In conclusion, our data synthesis framework systematically addresses the challenges associated with
the scarcity and imbalance of textual content in natural image datasets. By integrating multiple ren-
dering strategies that span simplicity, realism, and structural complexity, the framework synthesize
comprehensive and diverse training data. Robustness across various text rendering tasks is achieved,
thereby enhancing the model’s ability to generate high-quality images that accurately follow complex
user prompts about text rendering.
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4 Training

4.1 Pre-training

We adopt a flow matching training objective to pre-train Qwen-Image, which facilitates stable learning
dynamics via ordinary differential equations (ODEs) while preserving equivalence to the maximum
likelihood objective. Formally, let x0 denote the latent of the input image. The latent representation z
is obtained by encoding x0 through the variational autoencoder (VAE) encoder E , i.e., z = E(x), where
E : x 7→ z. Next, a random noise vector x1 is sampled from the standard multivariate normal distribution,
i.e., x1 ∼ N (0, I). For a user input S, which may comprise text or prompt combined with image, the
guidance latent h is obtained from an MLLM ϕ, i.e., h = ϕ(S), where ϕ : S 7→ h. In addition, a diffusion
timestep t is sampled from a logit-normal distribution with t ∈ [0, 1]. According to Rectified Flow (Liu
et al., 2022; Esser et al., 2024), the intermediate latent variable at timestep t and its corresponding velocity
vt can be calculated as: 

xt = tx0 + (1 − t)x1

vt =
dxt

dt
= x0 − x1

. (1)

Then, the model is trained to predict the target velocity, and the loss function is defined as the mean
squared error (MSE) between the predicted output fθ(xt, t) and the ground truth velocity vt:

L = E(x0,h)∼D,x1,t ∥vθ(xt, t, h)− vt∥2 , (2)

where vθ(xt, t, h) is velocity predicted by the model and D denotes the training dataset.

4.1.1 Producer-Consumer Framework

To ensure both high throughput and training stability when scaling to large-scale GPU clusters, we adopt
a Ray (Moritz et al., 2018)-inspired Producer–Consumer framework that decouples data preprocessing
from model training. This design enables both stages to operate asynchronously and at optimal efficiency,
while also supporting on-the-fly updates to the data pipeline without interrupting the ongoing training
process. On the Producer side, raw image-caption pairs are first filtered according to our pre-defined
criteria, such as image resolution and detection operators. The selected data is then encoded into latent
representations using MLLM models (e.g., Qwen2.5 VL) and VAE. Processed images are subsequently
grouped by resolution in fast-access cache buckets and stored in a shared, location-aware store, allowing
consumers to fetch them immediately without waiting in line. The connection between the Producer and
Consumer is achieved by employing a specific HTTP transport layer, which natively supports the RPC
semantics required for asynchronous, zero-copy scheduling between the two endpoints. The Consumer
is deployed on GPU-dense clusters and is dedicated exclusively to model training. By offloading all data
processing to the Producer, the Consumer nodes can devote their entire compute budget to training the
MMDiT model. The MMDiT parameters are distributed across these nodes under a 4-way tensor-parallel
layout, and every data-parallel group asynchronously pulls pre-processed batches directly from the
Producer. Additional consumer-side optimizations are detailed in the following section.

4.1.2 Distributed Training Optimization

Given the large parameter size of the Qwen-Image model, using FSDP (Zhao et al., 2023) alone is
insufficient to fit the model on each GPU. Therefore, we leverage Megatron-LM (Shoeybi et al., 2019;
Korthikanti et al., 2023) for training and apply the following optimizations:

Hybrid Parallelism Strategy We adopted a hybrid parallelism strategy, combining data parallelism
and tensor parallelism, to efficiently scale training across large GPU clusters. Specifically, to implement
tensor parallelism, we built the MMDiT model using the Transformer-Engine library1, which allows
seamless and automatic switching between different degrees of tensor parallelism. Furthermore, for the
multi-head self-attention blocks, we employ the head-wise parallelism to reduce the synchronization and
communication overhead compared to tensor parallelism along the head dimension.

Distributed Optimizer and Activation Checkpointing To alleviate GPU memory pressure with mini-
mal recomputation overhead during backpropagation, we experimented with both distributed optimizers
and activation checkpointing. However, activation checkpointing introduces substantial computational
overhead in the backward pass, which can significantly degrade training speed. Through empirical

1https://github.com/NVIDIA/TransformerEngine
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comparison with the 256 multi-resolution image training setup, we observed that enabling activation
checkpointing reduced per-GPU memory consumption by 11.3% (from 71GB to 63GB per GPU), but at
the cost of increasing per-iteration time by 3.75× (from 2s to 7.5s per iteration). Based on this trade-off,
we ultimately opted to disable activation checkpointing and rely solely on distributed optimizers. During
training, all-gather operations are performed in bfloat16, while gradient reduce-scatter operations utilize
float32, ensuring both computational efficiency and improved numerical stability.

4.1.3 Training Strategy

We adopt a multi-stage pre-training strategy aimed at progressively enhancing data quality, image
resolution, and model performance. Throughout different training stages, we integrate various training
strategies to optimize the learning process. These training strategies are listed below:

Enhancing Resolution: From Low Resolution to High Resolution This strategy progressively upscales
the multi-resolution, multi-aspect ratio inputs, starting from an initial resolution of 256×256 pixels (with
various aspect ratios including 1:1, 2:3, 3:2, 3:4, 4:3, 9:16, 16:9, 1:3 and 3:1), then increasing to 640×640
pixels, and finally reaching 1328×1328 pixels. By enhancing image resolution, the model can capture more
detailed features, leading to better performance. Richer feature spaces facilitate improved generalization
to unseen data. For example, transitioning from low-resolution to high-resolution flower images allows
the model to discern finer details such as petal textures and color gradients.

Integrating Textual Rendering: From Non-text to Text To address the limited availability of textual
content in conventional vision datasets and the consequent suboptimal glyph generation performance,
particularly for Chinese characters, we progressively introduce images containing rendered text su-
perimposed on natural backgrounds. This strategy enables the model to initially learn general visual
representations and subsequently acquire text rendering capability.

Refining Data Quality: From Massive Data to Refined Data During the early stages of pre-training,
we utilize large-scale datasets to enable the model to acquire fundamental visual generation capabilities.
As training progresses, we gradually employ increasingly stringent data filtering mechanisms to select
higher-quality data. This progressive data refinement ensures that only the most relevant and high-quality
samples are leveraged to ensure the training efficiency and model performance.

Balancing Data Distribution: From Unbalanced to Balanced Throughout the training process, we
progressively balance the dataset with respect to domain and image resolution distributions. This
adjustment mitigates the risk of the model overfitting to particular domains or resolutions, which could
otherwise compromise the fidelity and fine-grained details of generated images in underrepresented
settings. By maintaining a more uniform data distribution, we promote robust generalization across
diverse domains and resolutions.

Augmenting with Synthetic Data: From Real-World Data to Synthetic Data Certain data distributions,
such as surrealistic styles or high-resolution images containing extensive textual content, are underrep-
resented or even absent in real-world datasets. Additionally, the availability of some high-quality data
samples is inherently limited. To address these gaps, we employ data synthesis techniques to generate
supplementary samples, thereby enriching the dataset and ensuring more comprehensive coverage of
diverse visual domains. This augmentation strategy enhances the model’s ability to generalize and
perform robustly across a wider range of scenarios.

4.2 Post-training

In this section, we present the post-training framework for Qwen-Image, which consists of two stages:
supervised fine-tuning (SFT) and reinforcement learning (RL) (Kaelbling et al., 1996).

4.2.1 Supervised Fine-Tuning (SFT)

During the SFT stage, we construct a hierarchically organized dataset of semantic categories and employ
meticulous human annotation to address specific shortcomings of the model. We require selected images
to be clear, rich in detail, bright, and photorealistic. This approach is designed to guide the model towards
producing content with greater realism and finer details.
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4.2.2 Reinforcement Learning (RL)

We employ two distinct RL strategies: Direct Preference Optimization (DPO) (Rafailov et al., 2023) and
Group Relative Policy Optimization (GRPO) (Shao et al., 2024). DPO excels at flow-matching (one step)
online preference modeling and is computationally efficient, whereas GRPO performs on-policy sampling
during training and evaluates each trajectory with a reward model. To leverage the scalability advantages
of offline preference learning, we conduct relative large-scale RL with DPO and reserve GRPO for small
fine-grained RL refinement. Details of both algorithms are provided below.

(A) Direct Preference Optimization (DPO)

Data Preparation For DPO training data, given the same prompt, multiple images are generated with
different random initialization seeds. Human annotators are then tasked with selecting the best and
the worst images from these candidates. The data is divided into two categories: prompts associated
with reference (gold) images, and prompts without reference images. For data with reference images,
annotators first compare the generated outputs to the reference. If there is a significant discrepancy, the
annotators are instructed to designate the worst generation as the rejected sample. For prompts without
reference images, annotators are asked to select the best and worst samples among the generated images,
or to indicate if all generated results are of unsatisfactory quality.

Algorithm Given the text hidden state h, chosen generated image (or golden image) xwin
0 and rejected

generated image xlose
0 , we sample timestep t ∼ (0, 1) to construct the input latent variable xwin

t and xlose
t

as well as their corresponding velocity vwin
t and vlose

t following Equation 1. Then, inspired by previous
work (Wallace et al., 2024), we construct the DPO objective based on the flow matching training criterion,
which can be formulated as follows:



Diffpolicy =
(∥∥vθ(xwin

t , h, t)− vwin
t

∥∥2
2 −

∥∥vθ(xlose
t , h, t)− vlose

t
∥∥2

2

)
Diffref =

(∥∥vref(xwin
t , h, t)− vwin

t
∥∥2

2 −
∥∥vref(xlose

t , h, t)− vlose
t

∥∥2
2

)
LDPO = −Eh,(xwin

0 ,xlose
0 )∼D, t∼U (0,1)

[
log σ

(
− β (Diffpolicy − Diffref)

)]
,

(3)

where Diffpolicy and Diffref denote the preference differences computed by the policy model and the
reference model, respectively, β is a scaling parameter, and σ(·) denotes the sigmoid function.

(B) Group Relative Policy Optimization (GRPO)

Algorithm After training with DPO, we perform further fine-grained training using GRPO following
the Flow-GRPO (Liu et al., 2025a) framework. Given text hidden state h, the flow model predicts a
group of G images {xi

0}G
i=1 and the corresponding trajectory {xi

T , xi
T−1, ..., xi

0}G
i=1. Within each group, the

advantage function can be formulated as:

Ai =
R(xi

0, h)− mean({R(xi
0, h)}G

i=1)

std({R(xi
0, h)}G

i=1)
, (4)

where R is the reward model. Then, the training objective of GRPO is:

LGRPO(θ) =Eh∼D,{xi
T ,...,xi

0}
G
i=1∼πθ

1
G

G

∑
i=1

1
T

T−1

∑
t=0

(
min(ri

t(θ)Ai, clip(ri
t(θ), 1 − ϵ, 1 + ϵ)Ai)− βDKL(πθ ||πref)

)
,

(5)

where ri
t(θ) =

pθ(xi
t−1|x

i
t ,h)

pθold
(xi

t−1|x
i
t ,h)

.

When sampling the trajectories {xi
T , ..., xi

0}G
i=1 ∼ πθ , we have dxt = vtdt for flow-matching sampling (fol-

lowing Eq. 1), where vt = vθ(xt, t, h) is the predicted velocity. However, this sampling strategy exhibits
no randomness, which is not suitable for exploration. Thus, we reformulate the sampling process as an
SDE process for more randomness. The SDE sampling process can be written as:

dxt =

(
vt +

σ2
t

2t
(xt + (1 − t)vt)

)
dt + σtdw, (6)
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Figure 14: Overview of the Image Editing (TI2I) task. Left: Illustration of the TI2I task training input
format. The user prompt is “Turn into realistic style” in English. Right: The corresponding modification
to MSRoPE for TI2I, where a new dimension (frame) is introduced to distinguish between the images
before and after editing.

System Prompt for TI2I task

<|im_start|>system
Describe the key features of the input image (color, shape, size, texture, objects, background), then
explain how the user’s text instruction should alter or modify the image. Generate a new image that
meets the user’s requirements while maintaining consistency with the original input where appropri-
ate. <|im_end|>
<|im_start|>user
<|vision_start|><|user_image|><|vision_end|><|user_text|><|im_end|>
<|im_start|>assistant

Figure 15: System prompt for Image Editing (TI2I) task, where <|user_image|> is the user input image
and <|user_text|> is the user input prompt.

where σt denotes the magnitude of randomness. Using Euler-Maruyama discretization, we have

xt+∆t = xt +

[
vθ(xt, t, h) +

σ2
t

2t
(xt + (1 − t)vθ(xt, t, h))

]
∆t + σt

√
∆tϵ. (7)

We use the above equation for sampling the trajectories. The KL-divergence in Eq. (5) can be solved in a
closed form

DKL(πθ ||πref) =
∆t
2

(
σt(1 − t)

2t
+

1
σt

)2

||vθ(xt, t, h)− vref(xt, t, h)||2. (8)

4.3 Multi-task training

In addition to text-to-image (T2I) generation, we extend our base model to explore multi-modal image
generation tasks that incorporate both text and image inputs, including instruction-based image edit-
ing (Wang et al., 2025), novel view synthesis (Wang et al., 2024b), and computer vision tasks such as
depth estimation (Bochkovskii et al., 2024). We can broadly regard these as general image editing tasks.
Building on the capabilities of Qwen2.5-VL, our model natively supports image inputs: visual patches
extracted from the user-provided image are encoded by a Vision Transformer (ViT) and concatenated
with text tokens to form the input sequence. We design the system prompt shown in Figure 15 and extract
both the input image and textual instructions as inputs to the text stream of Qwen-Image MMDiT.

Inspired by prior work (Labs et al., 2025), which demonstrates that incorporating VAE embeddings helps
maintain character and scene consistency, we additionally feed the VAE-encoded latent representation
of the input image into the image stream, concatenating it with the noised image latent along the
sequence dimension. To enable the model to distinguish between multiple images, we extend MSRoPE
by introducing an additional frame dimension, in addition to the height and width used to locate image
patches within a single image (see the right part of Figure 14). Empirically, we find that providing the
visual semantic embeddings from the MLLM enables better instruction following, while introducing
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(a) Front end of AI Arena platform (b) Text-to-Image Elo Leaderboard
Figure 16: Comparison of Qwen-Image and leading closed-source APIs on the AI Arena platform. Users
can compare images generated by two anonymous models based on the prompt and choose which one is
better, both are good, or both are bad. ELo Leaderboard is powered by Qwen3-Coder (Qwen, 2025) from
chat.qwen.ai.

pixel-level VAE embeddings further enhances the model’s ability to preserve visual fidelity and maintain
structural consistency with the user-provided image.

5 Experiments

5.1 Human Evaluation

To comprehensively evaluate the general image generation capabilities of Qwen-Image and objectively
compare it with state-of-the-art closed-source APIs, we have developed AI Arena2, an open benchmarking
platform built upon the Elo rating system (Elo &Sloan, 2008), as shown in Figure 16.

AI Arena serves as a fair and dynamic open competition platform. In each round, two images generated
by randomly selected models using the same prompt are anonymously presented to users for pairwise
comparison. Users vote for the superior image, and the results are used to update personal and global
leaderboards through the Elo algorithm, allowing developers, researchers, and users to holistically assess
the performance of models. Specifically, we curated about 5,000 diverse prompts that span a wide range
of evaluation dimensions, including subject, style, photographic perspective, and more. More than 200
evaluators from various professional backgrounds were invited to participate in the assessment process.

AI Arena is now open to the public. Anyone can participate in the comparison of different models. In the
future, the platform will further expand from text-to-image generation to various multimodal generation
tasks such as image editing, text-to-audio, text-to-video, and image-to-video generation. The platform
strictly adheres to the standards of objectivity and independence, and will detect and eliminate cheating
or invalid data through various techniques.

We selected five state-of-the-art closed-source APIs as competitors for Qwen-Image in the arena: Imagen
4 Ultra Preview 0606 (Google, 2025), Seedream 3.0 (Gao et al., 2025), GPT Image 1 [High] (OpenAI, 2025),
FLUX.1 Kontext [Pro] (Labs et al., 2025), and Ideogram 3.0 (Ideogram, 2025). To date, each model has
participated in at least 10,000 pairwise comparisons, ensuring robustness and fairness in the evaluation.
Considering that most closed-source APIs do not reliably support Chinese text generation, we excluded
prompts involving Chinese text to maintain objectivity in the comparative results.

As shown in Figure 16, Qwen-Image, as the only open-source image generation model, ranks third in
the AI Arena. Although Qwen-Image trails the leading Imagen 4 Ultra Preview 0606 by 3̃0 Elo points,
it demonstrates a significant advantage of over 30 Elo points compared to models such as GPT Image 1
[High] and FLUX.1 Kontext [Pro]. These results establish Qwen-Image as a powerful open-source image
generation model, providing strong performance and broad utility for developers, researchers, and users.

5.2 Quantitative Results

To comprehensively evaluate the visual generation capabilities of our model, we first report its perfor-
mance on VAE reconstruction in §§ 5.2.1, which serves to demonstrate the upper bound of the model’s

2https://aiarena.alibaba-inc.com
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Table 2: Quantitative Evaluation results of VAE.

Model # Params # Image Params Imagenet_256x256 Text_256x256

Enc Dec Enc Dec PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑)

Wan2.1-VAE (Wan et al., 2025) 54M 73M 19M 25M 31.29 0.8870 26.77 0.9386
Hunyuan-VAE (Kong et al., 2024) 100M 146M 34M 50M 33.21 0.9143 32.83 0.9773
FLUX-VAE (BlackForest, 2024) 34M 50M 34M 50M 32.84 0.9155 32.65 0.9792
Cosmos-CI-VAE (Agarwal et al., 2025) 31M 46M 31M 46M 32.23 0.9010 30.62 0.9664
SD-3.5-VAE (Esser et al., 2024) 34M 50M 34M 50M 31.22 0.8839 29.93 0.9658

Qwen-Image-VAE 54M 73M 19M 25M 33.42 0.9159 36.63 0.9839

generation quality. We further conduct evaluations on two fundamental visual generation tasks, text-
to-image (T2I) in §§ 5.2.2 and image editing (TI2I) in §§ 5.2.3, to provide a thorough assessment of the
model’s foundational generative abilities.

5.2.1 Performance of VAE Reconstruction

We quantitatively evaluate several state-of-the-art image tokenizers, reporting Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) to assess reconstruction quality. All
compared VAEs operate at an 8x8 compression rate using a latent channel dimension of 16. Notably,
FLUX-VAE (BlackForest, 2024), Cosmos-CI-VAE (Agarwal et al., 2025), and SD-3.5-VAE (Esser et al.,
2024) are image tokenizers, while Wan2.1-VAE (Wan et al., 2025), Hunyuan-VAE (Kong et al., 2024), and
Qwen-Image-VAE function as joint image and video tokenizers. For a fair comparison, we report effective
image parameters (see "Image Params" in Table 2). This accounts for converting the 3D convolutions
in joint models to equivalent 2D convolutions for image processing. Following prior art, evaluation is
conducted on the ImageNet-1k (Deng et al., 2009) validation set at 256x256 resolution for general domain
performance. To further evaluate reconstruction capabilities on small texts, we also include reconstruction
results on an in-house text-rich corpus covering diverse text sources (PDFs, PPT slides, posters, and
synthetic texts) and languages. For improved numerical precision, we evaluate tokenizers using float32.
As shown in Table 2, Qwen-Image-VAE achieves state-of-the-art reconstruction performance across
all evaluated metrics. Significantly, when processing images, Qwen-Image-VAE activates only 19M
parameters in the encoder and 25M in the decoder, achieving an optimal balance between reconstruction
quality and computational efficiency.

5.2.2 Performance of Text-to-Image Generation

We evaluate Qwen-Image’s performance on the text-to-image (T2I) task from two perspectives: general
generation capability and text rendering capability. To assess the model’s general generation performance,
we conduct evaluations on four publicly available benchmarks — DPG (Hu et al., 2024b), GenEval (Ghosh
et al., 2023), OneIG-Bench (Chang et al., 2025), and TIIF (Wei et al., 2025). These benchmarks provide a
comprehensive measurement of the model’s ability to generate high-quality and semantically consistent
images from text prompts. To further evaluate the model’s text rendering capability, we separately
evaluate its performance on English and Chinese text generation. For English text rendering, we use
the CVTG-2K (Du et al., 2025) benchmark, which is specifically designed to assess the readability of the
rendered English text. To address the lack of standardized evaluation for Chinese text rendering, we
introduce a new benchmark named ChineseWord, which evaluates the model’s ability to render Chinese
characters, allowing us to systematically assess the model’s text rendering performance. Furthermore,
to fully evaluate Qwen-Image’s ability to accurately render long texts, we conducted an evaluation on
LongText-Bench (Geng et al., 2025), a benchmark designed to evaluate the performance on rendering
longer texts in both English and Chinese.

DPG Table 3 shows the performance comparison on DPG (Hu et al., 2024b). This benchmark consists
of 1K dense prompts, enabling fine-grained assessment of different aspects of prompt adherence. In
general, Qwen-Image achieves the highest overall score, indicating its superior prompt-following capa-
bility. In particular, Qwen-Image excels at interpreting prompts involving attributes and other facets,
outperforming all other models in the comparison.

GenEval Table 4 presents a comparison of model performance on the GenEval (Ghosh et al., 2023)
benchmark, which focuses on object-centric text-to-image generation using compositional prompts with
diverse object attributes. We separately assess the performance of both the SFT model and the RL-
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Table 3: Quantitative evaluation results on DPG (Hu et al., 2024b).

Model Global Entity Attribute Relation Other Overall↑
SD v1.5 (Rombach et al., 2021) 74.63 74.23 75.39 73.49 67.81 63.18
PixArt-α (Chen et al., 2024c) 74.97 79.32 78.60 82.57 76.96 71.11
Lumina-Next (Zhuo et al., 2024) 82.82 88.65 86.44 80.53 81.82 74.63
SDXL (Podell et al., 2023) 83.27 82.43 80.91 86.76 80.41 74.65
Playground v2.5 (Li et al., 2024a) 83.06 82.59 81.20 84.08 83.50 75.47
Hunyuan-DiT (Li et al., 2024b) 84.59 80.59 88.01 74.36 86.41 78.87
Janus (Wu et al., 2025a) 82.33 87.38 87.70 85.46 86.41 79.68
PixArt-Σ (Chen et al., 2024b) 86.89 82.89 88.94 86.59 87.68 80.54
Emu3-Gen (Wang et al., 2024a) 85.21 86.68 86.84 90.22 83.15 80.60
Janus-Pro-1B (Chen et al., 2025b) 87.58 88.63 88.17 88.98 88.30 82.63
DALL-E 3 (OpenAI, 2023) 90.97 89.61 88.39 90.58 89.83 83.50
FLUX.1 [Dev] (BlackForest, 2024) 74.35 90.00 88.96 90.87 88.33 83.84
SD3 Medium (Esser et al., 2024) 87.90 91.01 88.83 80.70 88.68 84.08
Janus-Pro-7B (Chen et al., 2025b) 86.90 88.90 89.40 89.32 89.48 84.19
HiDream-I1-Full (Cai et al., 2025) 76.44 90.22 89.48 93.74 91.83 85.89
Lumina-Image 2.0 (Qin et al., 2025) - 91.97 90.20 94.85 - 87.20
Seedream 3.0 (Gao et al., 2025) 94.31 92.65 91.36 92.78 88.24 88.27
GPT Image 1 [High] (OpenAI, 2025) 88.89 88.94 89.84 92.63 90.96 85.15

Qwen-Image 91.32 91.56 92.02 94.31 92.73 88.32

Table 4: Quantitative Evaluation results on GenEval (Ghosh et al., 2023).

Model Single Two Counting Colors Position Attribute Overall↑Object Object Binding

Show-o (Xie et al., 2024) 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Emu3-Gen (Wang et al., 2024a) 0.98 0.71 0.34 0.81 0.17 0.21 0.54
PixArt-α (Chen et al., 2024c) 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SD3 Medium (Esser et al., 2024) 0.98 0.74 0.63 0.67 0.34 0.36 0.62
FLUX.1 [Dev] (BlackForest, 2024) 0.98 0.81 0.74 0.79 0.22 0.45 0.66
SD3.5 Large (Esser et al., 2024) 0.98 0.89 0.73 0.83 0.34 0.47 0.71
JanusFlow (Ma et al., 2025) 0.97 0.59 0.45 0.83 0.53 0.42 0.63
Lumina-Image 2.0 (Qin et al., 2025) - 0.87 0.67 - - 0.62 0.73
Janus-Pro-7B (Chen et al., 2025b) 0.99 0.89 0.59 0.90 0.79 0.66 0.80
HiDream-I1-Full (Cai et al., 2025) 1.00 0.98 0.79 0.91 0.60 0.72 0.83
GPT Image 1 [High] (OpenAI, 2025) 0.99 0.92 0.85 0.92 0.75 0.61 0.84
Seedream 3.0 (Gao et al., 2025) 0.99 0.96 0.91 0.93 0.47 0.80 0.84

Qwen-Image 0.99 0.92 0.89 0.88 0.76 0.77 0.87
Qwen-Image-RL 1.00 0.95 0.93 0.92 0.87 0.83 0.91

enhanced model against other leading foundation models. Notably, our base model already surpasses
the state of the art, outperforming Seedream 3.0 (Gao et al., 2025) and GPT Image 1 [High] (OpenAI,
2025). Following reinforcement learning (RL) fine-tuning, our model achieves an even higher score of
0.91, making it the only foundation model on the leaderboard to exceed the 0.9 threshold. These results
demonstrate the superior controllable generation capabilities of Qwen-Image.

OneIG-Bench Table. 5 and Table. 6 report the quantitative results on OneIG-Bench (Chang et al.,
2025), a comprehensive benchmark designed for fine-grained evaluation of T2I models across multiple
dimensions. For a fair overall comparison, we average the scores across all dimensions to obtain the final
overall score. In general, Qwen-Image achieves the highest overall score on both the Chinese and English
tracks, demonstrating its strong general-purpose generation capability. Notably, it ranks first in the
Alignment and Text categories, evidencing its superior prompt following and text rendering capabilities.

TIIF Table 7 shows the performance comparison on TIIF Bench mini (Wei et al., 2025), a benchmark de-
signed to systematically evaluate T2I model’s ability to interpret and follow intricate textual instructions.
Overall, Qwen-Image ranks second, surpassed only by GPT Image 1 (OpenAI, 2025), underscoring its
strong instruction-following capabilities.

21



Table 5: Quantitative evaluation results on OneIG-EN (Chang et al., 2025). The overall score is the average
of the five dimensions.

Model Alignment Text Reasoning Style Diversity Overall↑
Janus-Pro (Chen et al., 2025b) 0.553 0.001 0.139 0.276 0.365 0.267
BLIP3-o (Chen et al., 2025a) 0.711 0.013 0.223 0.361 0.229 0.307
BAGEL (Deng et al., 2025) 0.769 0.244 0.173 0.367 0.251 0.361
BAGEL+CoT (Deng et al., 2025) 0.793 0.020 0.206 0.390 0.209 0.324
Show-o2-1.5B (Xie et al., 2025b) 0.798 0.002 0.219 0.317 0.186 0.304
Show-o2-7B (Xie et al., 2025b) 0.817 0.002 0.226 0.317 0.177 0.308
OmniGen2 (Wu et al., 2025b) 0.804 0.680 0.271 0.377 0.242 0.475
SD 1.5 (Rombach et al., 2021) 0.565 0.010 0.207 0.383 0.429 0.319
SDXL (Podell et al., 2023) 0.688 0.029 0.237 0.332 0.296 0.316
SD3.5 Large (Esser et al., 2024) 0.809 0.629 0.294 0.353 0.225 0.462
FLUX.1 [Dev] (BlackForest, 2024) 0.786 0.523 0.253 0.368 0.238 0.434
CogView4 (Z.ai, 2025) 0.786 0.641 0.246 0.353 0.205 0.446
SANA-1.5 1.6B (PAG) (Xie et al., 2025a) 0.762 0.054 0.209 0.387 0.222 0.327
SANA-1.5 4.8B (PAG) (Xie et al., 2025a) 0.765 0.069 0.217 0.401 0.216 0.334
Lumina-Image 2.0 (Qin et al., 2025) 0.819 0.106 0.270 0.354 0.216 0.353
HiDream-I1-Full (Cai et al., 2025) 0.829 0.707 0.317 0.347 0.186 0.477
Imagen3 (Google, 2024) 0.843 0.343 0.313 0.359 0.188 0.409
Recraft V3 (Recraft, 2024) 0.810 0.795 0.323 0.378 0.205 0.502
Kolors 2.0 (team, 2025) 0.820 0.427 0.262 0.360 0.300 0.434
Seedream 3.0 (Gao et al., 2025) 0.818 0.865 0.275 0.413 0.277 0.530
Imagen4 (Google, 2025) 0.857 0.805 0.338 0.377 0.199 0.515
GPT Image 1 [High] (OpenAI, 2025) 0.851 0.857 0.345 0.462 0.151 0.533

Qwen-Image 0.882 0.891 0.306 0.418 0.197 0.539

Table 6: Quantitative evaluation results on OneIG-ZH (Chang et al., 2025). The overall score is the average
of the five dimensions.

Model Alignment Text Reasoning Style Diversity Overall↑
Janus-Pro (Chen et al., 2025b) 0.324 0.148 0.104 0.264 0.358 0.240
BLIP3-o (Chen et al., 2025a) 0.608 0.092 0.213 0.369 0.233 0.303
BAGEL (Deng et al., 2025) 0.672 0.365 0.186 0.357 0.268 0.370
BAGEL+CoT (Deng et al., 2025) 0.719 0.127 0.219 0.385 0.197 0.329
Cogview4 (Z.ai, 2025) 0.700 0.193 0.236 0.348 0.214 0.338
Lumina-Image 2.0 (Qin et al., 2025) 0.731 0.136 0.221 0.343 0.240 0.334
HiDream-I1-Full (Cai et al., 2025) 0.620 0.205 0.256 0.304 0.300 0.337
Kolors 2.0 (team, 2025) 0.738 0.502 0.226 0.331 0.333 0.426
Seedream 3.0 (Gao et al., 2025) 0.793 0.928 0.281 0.397 0.243 0.528
GPT Image 1 [High] (OpenAI, 2025) 0.812 0.650 0.300 0.449 0.159 0.474

Qwen-Image 0.825 0.963 0.267 0.405 0.279 0.548

CVTG-2K Table 8 reports the quantitative results of English rendering on CVTG-2K (Du et al., 2025).
This benchmark contains 2K prompts, each requiring 2–5 regions of English to be rendered on the
generated image. Three metrics: Word Accuracy, NED, CLIPScore are introduced to measure the accuracy
of text rendering. As shown in the table, Qwen-Image achieves performance comparable to that of
state-of-the-art image generation models, underscoring its powerful English text rendering capability.

ChineseWord Table 9 reports the quantitative results on ChineseWord, our new benchmark for
character-level Chinese text rendering. In accordance with the List of Commonly Used Standard Chinese
Characters, we group the characters into three difficulty tiers: Level-1 (3500 characters), Level-2 (3000
characters) and Level-3 (1605 characters). We craft several prompt templates that instruct text-to-image
models to generate an image containing a single Chinese character. Across all three tiers, Qwen-Image
attains the highest rendering accuracy, underscoring its superior ability to render Chinese text.

LongText-Bench Table 10 reports the quantitative results on LongText-Bench (Geng et al., 2025), a
benchmark specifically designed to assess a model’s ability to precisely render lengthy texts. The dataset
contains 160 prompts spanning eight distinct scenarios. As shown in the table, Qwen-Image attains the
highest accuracy on long Chinese text and the second-highest accuracy on long English text, illustrating
Qwen-Image’s superior long text rendering capability.
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Table 7: Quantitative evaluation results on TIIF Bench testmini (Wei et al., 2025). The best result is in bold
and the second best result is underlined.

Model
Overall

Basic Following Advanced Following Designer

Avg Attribute Relation Reasoning Avg Attribute
+Relation

Attribute
+Reasoning

Relation
+Reasoning Style Text Real

World

short long short long short long short long short long short long short long short long short long short long short long short long

FLUX.1 [dev] (BlackForest, 2024) 71.09 71.78 83.12 78.65 87.05 83.17 87.25 80.39 75.01 72.39 65.79 68.54 67.07 73.69 73.84 73.34 69.09 71.59 66.67 66.67 43.83 52.83 70.72 71.47

FLUX.1 [Pro] (BlackForest, 2024) 67.32 69.89 79.08 78.91 78.83 81.33 82.82 83.82 75.57 71.57 61.10 65.37 62.32 65.57 69.84 71.47 65.96 67.72 63.00 63.00 35.83 55.83 71.80 68.80

DALL-E 3 (OpenAI, 2023) 74.96 70.81 78.72 78.50 79.50 79.83 80.82 78.82 75.82 76.82 73.39 67.27 73.45 67.20 72.01 71.34 63.59 60.72 89.66 86.67 66.83 54.83 72.93 60.99

SD 3 (Esser et al., 2024) 67.46 66.09 78.32 77.75 83.33 79.83 82.07 78.82 71.07 74.07 61.46 59.56 61.07 64.07 68.84 70.34 50.96 57.84 66.67 76.67 59.83 20.83 63.23 67.34

PixArt-Σ (Chen et al., 2024b) 62.00 58.12 70.66 75.25 69.33 78.83 75.07 77.32 67.57 69.57 57.65 49.50 65.20 56.57 66.96 61.72 66.59 54.59 83.33 70.00 1.83 1.83 62.11 52.41

Lumina-Next (Zhuo et al., 2024) 50.93 52.46 64.58 66.08 56.83 59.33 67.57 71.82 69.32 67.07 44.75 45.63 51.44 43.20 51.09 59.72 44.72 54.46 70.00 66.67 0.00 0.83 47.56 49.05

Hunyuan-DiT (Li et al., 2024b) 51.38 53.28 69.33 69.00 65.83 69.83 78.07 73.82 64.07 63.32 42.62 45.45 50.20 41.57 59.22 61.84 47.84 51.09 56.67 73.33 0.00 0.83 40.10 44.20

Show-o (Xie et al., 2024) 59.72 58.86 73.08 75.83 74.83 79.83 78.82 78.32 65.57 69.32 53.67 50.38 60.95 56.82 68.59 68.96 66.46 56.22 63.33 66.67 3.83 2.83 55.02 50.92

LightGen (Wu et al., 2025c) 53.22 43.41 66.58 47.91 55.83 47.33 74.82 45.82 69.07 50.57 46.74 41.53 62.44 40.82 61.71 50.47 50.34 45.34 53.33 53.33 0.00 6.83 50.92 50.55

SANA 1.5 (Xie et al., 2025a) 67.15 65.73 79.66 77.08 79.83 77.83 85.57 83.57 73.57 69.82 61.50 60.67 65.32 56.57 69.96 73.09 62.96 65.84 80.00 80.00 17.83 15.83 71.07 68.83

Infinity (Han et al., 2025) 62.07 62.32 73.08 75.41 74.33 76.83 72.82 77.57 72.07 71.82 56.64 54.98 60.44 55.57 74.22 64.71 60.22 59.71 80.00 73.33 10.83 23.83 54.28 56.89

Janus-Pro-7B (Chen et al., 2025b) 66.50 65.02 79.33 78.25 79.33 82.33 78.32 73.32 80.32 79.07 59.71 58.82 66.07 56.20 70.46 70.84 67.22 59.97 60.00 70.00 28.83 33.83 65.84 60.25

MidJourney v7 (Midjourney, 2025) 68.74 65.69 77.41 76.00 77.58 81.83 82.07 76.82 72.57 69.32 64.66 60.53 67.20 62.70 81.22 71.59 60.72 64.59 83.33 80.00 24.83 20.83 68.83 63.61

Seedream 3.0 (Gao et al., 2025) 86.02 84.31 87.07 84.93 90.50 90.00 89.85 85.94 80.86 78.86 79.16 80.60 79.76 81.82 77.23 78.85 75.64 78.64 100.00 93.33 97.17 87.78 83.21 83.58

GPT Image 1 [High] (OpenAI, 2025) 89.15 88.29 90.75 89.66 91.33 87.08 84.57 84.57 96.32 97.32 88.55 88.35 87.07 89.44 87.22 83.96 85.59 83.21 90.00 93.33 89.83 86.83 89.73 93.46

Qwen-Image 86.14 86.83 86.18 87.22 90.50 91.50 88.22 90.78 79.81 79.38 79.30 80.88 79.21 78.94 78.85 81.69 75.57 78.59 100.00 100.00 92.76 89.14 90.30 91.42

Table 8: Quantitative evaluation results of English text rendering on CVTG-2K (Du et al., 2025).

Model Word Accuracy↑ NED↑ CLIPScore↑
2 regions 3 regions 4 regions 5 regions average

SD3.5 Large (Esser et al., 2024) 0.7293 0.6825 0.6574 0.5940 0.6548 0.8470 0.7797
FLUX.1 [dev] (BlackForest, 2024) 0.6089 0.5531 0.4661 0.4316 0.4965 0.6879 0.7401
AnyText (Tuo et al., 2024) 0.0513 0.1739 0.1948 0.2249 0.1804 0.4675 0.7432
TextDiffuser-2 (Chen et al., 2024a) 0.5322 0.3255 0.1787 0.0809 0.2326 0.4353 0.6765
RAG-Diffusion (Chen et al., 2024d) 0.4388 0.3316 0.2116 0.1910 0.2648 0.4498 0.7797
3DIS (Zhou et al., 2024) 0.4495 0.3959 0.3880 0.3303 0.3813 0.6505 0.7767
TextCrafter (Du et al., 2025) 0.7628 0.7628 0.7406 0.6977 0.7370 0.8679 0.7868
Seedream 3.0 (Gao et al., 2025) 0.6282 0.5962 0.6043 0.5610 0.5924 0.8537 0.7821
GPT Image 1 [High] (OpenAI, 2025) 0.8779 0.8659 0.8731 0.8218 0.8569 0.9478 0.7982

Qwen-Image 0.8370 0.8364 0.8313 0.8158 0.8288 0.9116 0.8017

Table 9: Quantitative comparison results of Chinese text rendering.

Model Level-1 Acc Level-2 Acc Level-3 Acc Overall↑
Seedream 3.0 (Gao et al., 2025) 53.48 26.23 1.25 33.05
GPT Image 1 [High] (OpenAI, 2025) 68.37 15.97 3.55 36.14

Qwen-Image 97.29 40.53 6.48 58.30

5.2.3 Performance of Image Editing

We further train a multi-task version of Qwen-Image for image editing (TI2I) tasks, seamlessly integrating
both text and image as conditioning inputs. We evaluate our model across two categories of TI2I
tasks: First, for general-purpose image editing, we assess the instruction-based editing capability of our
model on the GEdit (Liu et al., 2025b) and ImgEdit (Ye et al., 2025) benchmarks. These benchmarks test
the model’s ability to perform open-ended edits based on textual and visual instructions. Second, to
evaluate the model’s spatial understanding and generative capability in 3D vision tasks, we benchmark
its performance on novel view synthesis (Downs et al., 2022) and depth estimation (Bochkovskii et al.,
2024). These tasks require the model to infer and generate coherent spatial information conditioned on
input images and corresponding textual descriptions. All these tasks can be unified within the TI2I scope,
showcasing the general applicability of our approach to diverse multimodal tasks.

GEdit Table 11 reports the results on the GEdit-Bench (Liu et al., 2025b), which evaluates image editing
models on real-world user instructions across 11 diverse categories. We adopt three metrics—Semantic
Consistency(SQ), Perceptual Quality (PQ), and Overall Score (O)—each ranging from 0 to 10. Qwen-
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Table 10: Quantitative evaluation results on LongText-Bench (Geng et al., 2025). The best result is in bold
and the second best result is underlined.

Model LongText-Bench-EN LongText-Bench-ZH

Janus-Pro (Chen et al., 2025b) 0.019 0.006
BLIP3-o (Chen et al., 2025a) 0.021 0.018
Kolors 2.0 (team, 2025) 0.258 0.329
BAGEL (Deng et al., 2025) 0.373 0.310
OmniGen2 (Wu et al., 2025b) 0.561 0.059
X-Omni (Geng et al., 2025) 0.900 0.814
HiDream-I1-Full (Cai et al., 2025) 0.543 0.024
FLUX.1 [Dev] (BlackForest, 2024) 0.607 0.005
Seedream 3.0 (Gao et al., 2025) 0.896 0.878
GPT Image 1 [High] (OpenAI, 2025) 0.956 0.619

Qwen-Image 0.943 0.946

Table 11: Comparison of Semantic Consistency (G_SC), Perceptual Quality (G_PQ), and Overall Score
(G_O) on GEdit-Bench. All metrics are evaluated by GPT-4.1. G_O is computed as the geometric mean
of G_SC and G_PQ, averaged over all samples. Note: FLUX.1 Kontext [Pro] underperforms on GEdit-
Bench-CN due to its limited Chinese language capability.

Model GEdit-Bench-EN (Full set)↑ GEdit-Bench-CN (Full set)↑
G_SC G_PQ G_O G_SC G_PQ G_O

Instruct-Pix2Pix (Brooks et al., 2023) 3.58 5.49 3.68 - - -
AnyEdit (Yu et al., 2025) 3.18 5.82 3.21 - - -
MagicBrush (Zhang et al., 2023) 4.68 5.66 4.52 - - -
UniWorld-v1 (Lin et al., 2025) 4.93 7.43 4.85 - - -
OmniGen (Xiao et al., 2025) 5.96 5.89 5.06 - - -
OmniGen2 (Wu et al., 2025b) 7.16 6.77 6.41 - - -
Gemini 2.0 (DeepMind, 2025) 6.73 6.61 6.32 5.43 6.78 5.36
BAGEL (Deng et al., 2025) 7.36 6.83 6.52 7.34 6.85 6.50
FLUX.1 Kontext [Pro] (Labs et al., 2025) 7.02 7.60 6.56 1.11 7.36 1.23
Step1X-Edit (Liu et al., 2025b) 7.66 7.35 6.97 7.20 6.87 6.86
GPT Image 1 [High] (OpenAI, 2025) 7.85 7.62 7.53 7.67 7.56 7.30

Qwen-Image 8.00 7.86 7.56 7.82 7.79 7.52

Table 12: Quantitative comparison results on ImgEdit (Ye et al., 2025). All metrics are evaluated by
GPT-4.1. “Overall” is calculated by averaging all scores across tasks.

Model Add Adjust Extract Replace Remove Background Style Hybrid Action Overall ↑

MagicBrush (Zhang et al., 2023) 2.84 1.58 1.51 1.97 1.58 1.75 2.38 1.62 1.22 1.90
Instruct-Pix2Pix (Brooks et al., 2023) 2.45 1.83 1.44 2.01 1.50 1.44 3.55 1.20 1.46 1.88
AnyEdit (Yu et al., 2025) 3.18 2.95 1.88 2.47 2.23 2.24 2.85 1.56 2.65 2.45
UltraEdit (Zhao et al., 2024) 3.44 2.81 2.13 2.96 1.45 2.83 3.76 1.91 2.98 2.70
OmniGen (Xiao et al., 2025) 3.47 3.04 1.71 2.94 2.43 3.21 4.19 2.24 3.38 2.96
ICEdit (Zhang et al., 2025) 3.58 3.39 1.73 3.15 2.93 3.08 3.84 2.04 3.68 3.05
Step1X-Edit (Liu et al., 2025b) 3.88 3.14 1.76 3.40 2.41 3.16 4.63 2.64 2.52 3.06
BAGEL (Deng et al., 2025) 3.56 3.31 1.70 3.3 2.62 3.24 4.49 2.38 4.17 3.20
UniWorld-V1 (Lin et al., 2025) 3.82 3.64 2.27 3.47 3.24 2.99 4.21 2.96 2.74 3.26
OmniGen2 (Wu et al., 2025b) 3.57 3.06 1.77 3.74 3.20 3.57 4.81 2.52 4.68 3.44
FLUX.1 Kontext [Pro] (Labs et al., 2025) 4.25 4.15 2.35 4.56 3.57 4.26 4.57 3.68 4.63 4.00
GPT Image 1 [High] (OpenAI, 2025) 4.61 4.33 2.90 4.35 3.66 4.57 4.93 3.96 4.89 4.20

Qwen-Image 4.38 4.16 3.43 4.66 4.14 4.38 4.81 3.82 4.69 4.27

Image ranks at the top of both the English and Chinese leaderboards, demonstrating strong editing
capability and generalization to multilingual user instructions.

ImgEdit Table 12 presents the results on the ImgEdit benchmark (Ye et al., 2025), which covers nine
common editing tasks across diverse semantic categories with a total of 734 real-world test cases. Evalua-
tion metrics include instruction adherence, image-editing quality, and detail preservation, all scored from
1 to 5. Qwen-Image ranks highest overall, closely followed by GPT Image 1 [High] and demonstrating
competitive instruction-based editing performance.

Novel view synthesis Table 13 shows the results of novel view synthesis on GSO (Downs et al., 2022)
dataset. We compare the similarity of the generated novel view image of a 3D object given its front view
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Table 13: Quantitative comparison of novel view synthesis with both specialized models and general
image generation models. We report PSNR, SSIM, LPIPS on the GSO (Downs et al., 2022) dataset.

Model PSNR↑ SSIM↑ LPIPS↓
Zero123 (Liu et al., 2023) 13.48 0.854 0.166
ImageDream (Wang &Shi, 2023) 15.22 0.883 0.164
CRM (Wang et al., 2024b) 15.93 0.891 0.152

GPT Image 1 [High] (OpenAI, 2025) 12.07 0.804 0.361
BAGEL (Deng et al., 2025) 13.78 0.825 0.237
FLUX.1 Kontext [Pro] (Labs et al., 2025) 14.50 0.859 0.201
Qwen-Image 15.11 0.884 0.153

Table 14: Quantitative comparison of depth estimation with both specialized models and multi-task
models on zero-shot datasets. Qwen-Image can perform on par with state-of-the-art models.

Model KITTI NYUv2 ScanNet DIODE ETH3D

AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑
MiDaS (Ranftl et al., 2020) 0.236 0.630 0.111 0.885 0.121 0.846 0.332 0.715 0.184 0.752
DPT-large (Ranftl et al., 2021) 0.100 0.901 0.098 0.903 0.082 0.934 0.182 0.758 0.078 0.946
DepthAnything (Yang et al., 2024a) 0.080 0.946 0.043 0.980 0.043 0.981 0.261 0.759 0.058 0.984
DepthAnything v2 (Yang et al., 2024b) 0.080 0.943 0.043 0.979 0.042 0.979 0.321 0.758 0.066 0.983
Depth Pro (Bochkovskii et al., 2024) 0.055 0.974 0.042 0.977 0.041 0.978 0.217 0.764 0.043 0.974
Metric3D v2 (Hu et al., 2024a) 0.052 0.979 0.039 0.979 0.023 0.989 0.147 0.892 0.040 0.983

GeoWizard (Fu et al., 2024) 0.097 0.921 0.052 0.966 0.061 0.953 0.297 0.792 0.064 0.961
DepthFM (Gui et al., 2024) 0.083 0.934 0.065 0.956 - - 0.225 0.800 - -
Marigold (Ke et al., 2024) 0.099 0.916 0.055 0.964 0.064 0.951 0.308 0.773 0.065 0.960
DMP (Lee et al., 2024) 0.240 0.622 0.109 0.891 0.146 0.814 0.361 0.706 0.128 0.857

Qwen-Image 0.078 0.951 0.055 0.967 0.047 0.974 0.197 0.832 0.066 0.962

with the ground truth image. We prompt Qwen-Image with prompts like "turn left 90 degrees, a dog"
to instruct the model to perform novel view synthesis. Qwen-Image demonstrates highly competitive
results among the baselines, achieving state-of-the-art performance of novel view synthesis.

Depth Estimation Table 14 summarizes performance on five widely used datasets: NYUv2 (Nathan Sil-
berman &Fergus, 2012), KITTI (Geiger et al., 2013), ScanNet (Dai et al., 2017), DIODE (Vasiljevic et al.,
2019), and ETH3D (Schops et al., 2017). During training, we adopt DepthPro (Bochkovskii et al., 2024)
as the teacher model to provide supervisory depth signals, following the protocol used in previous
work such as DICEPTION (Zhao et al., 2025). Notably, these results are achieved with standalone
supervised fine-tuning (SFT), in order to probe the model’s intrinsic task understanding capability. Qwen-
Image demonstrates highly competitive results among diffusion-based models, achieving state-of-the-art
performance on several key metrics across these benchmarks.

5.3 Qualitative Results

To comprehensively compare the visual generation capabilities of Qwen-Image and state-of-the-art
models, we first qualitatively compared the reconstruction performance of VAE on text-rich images in
§§ 5.3.1. We further conducted qualitative comparison on two basic visual generation tasks, text-to-image
(T2I) generation in §§ 5.3.2 and image editing (TI2I) in §§ 5.3.3, to comprehensively evaluate the basic
generation capabilities of the models.

5.3.1 Qualitative Results on VAE Reconstruction

Figure 17 presents qualitative results of reconstructing text-rich images with the state-of-the-art image
VAEs. The first row illustrates the reconstruction of a PDF image containing English text. In our result,
the phrase “double-aspect” remains clearly legible, whereas it is unrecognizable in the reconstructions
produced by other models. Overall, Qwen-Image-VAE delivers more precise reconstructions for images
with small texts.

5.3.2 Qualitative Results on Image Generation

In order to comprehensively evaluate Qwen-Image’s text-to-image generation capability, we conduct
qualitative evaluation from four aspects: English Text Rendering, Chinese Text Rendering, Multi-Object
Generation, and Spatial Relationship Generation. For comparative analysis, we benchmark our model
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FLUX Hunyuan Wan2.1 Qwen-Image OriginalSD-3.5 Cosmos-CI

Figure 17: Visualization of VAE reconstruction. We progressively zoom into the details across three rows
(black, orange, red) to compare how different VAEs reconstruct small text in dense document images.

against leading Text-to-Image foundation models, including both close-source models (GPT Image 1
[High] (OpenAI, 2025), Seedream 3.0 (Gao et al., 2025), Recraft V3 (Recraft, 2024) and open-source models
(Hidream-I1-Full (Cai et al., 2025) and Lumina-Image 2.0 (Qin et al., 2025)).

English Text Rendering Figure 18 and Figure 19 show the qualitative comparison of English text
rendering. As shown in Figure 18, Qwen-Image achieves a more realistic visual style and better rendering
quality for a long English paragraph. With respect to text rendering, our model demonstrates greater
fidelity to the given prompts, effectively avoiding issues such as missing, wrong, or duplicate characters
(e.g. wrong ”lantern” and ”Unfurling” in GPT Image 1 [High], wrong ”silver” and ”quiet” in Recraft
V3, redundant and distorted text in Seedream 3.0). In the upper half of Figure 19, Qwen-Image correctly
renders text in seven different locations, demonstrating its complex text rendering capabilities. In contrast,
GPT Image 1 misses "The night circus", and the text rendered by Seedream 3.0 and Hidream-I1-Full is
distorted. For the bottom half of Figure 19, Qwen-Image not only successfully renders each text segment,
but also presents a slide with reasonable layout and visually aesthetic. In comparison, GPT Image 1
misses "Stay Connected", Hidream-I1-Full and seedream 3.0 fail to render correct characters.

Chinese Text Rendering Figure 20 and Figure 21 show a qualitative comparison of Chinese text
rendering. In Figure 20, Qwen-Image accurately generates the expected Chinese couplet, faithfully
reproducing the content and style of the text, and accurately depicts the required room layout and
placement. In contrast, GPT Image 1 and Seedream 3.0 miss or generate distorted characters (missed "远"
and "善" in GPT Image 1, missed "智" and "机" in Seedream 3.0), while other models cannot generate
correct Chinese couplets. In Figure 21, the upper part shows an anime style scene, where Qwen-Image
can correctly generate multiple characters and store plaques, perfectly following the requirements of
input prompt for spatial layout and text rendering. Seedream 3.0 encounters difficulties in complex
spatial layouts, missing some scenes and characters, while other models cannot correctly understand
complex text and spatial instructions. The bottom part shows that Qwen-Image can generate realistic
and beautifully typeset handwritten text in complex scenes, which perfectly following the input prompt,
while other models struggle to generate structured paragraph text.

Multi-Object Generation As shown in the upper half of Figure 22, Qwen-Image accurately generates
all required animals, faithfully preserves their specified positions, and consistently applies the correct
plush style. In contrast, GPT Image 1 fails to generate images in the plush style, while Recraft V3 and
Seedream 3.0 produce incorrect animals that do not match the prompt. For the bottom part of Figure 22,
Qwen-Image not only correctly renders mixed-language texts on the billiards, but also strictly follows
the instruction to arrange the billiards in two rows. GPT Image 1 cannot perfectly follow the layout
requirements of instruction and also incorrectly generate a Chinese character "發", while other models
cannot correctly generate most Chinese characters.

Spatial Relationship Generation In the first part of Figure 23, Qwen-Image generates an image that
accurately reflects the prompt, capturing both the correct climbing scene and the specified interaction
between the two people. In contrast, GPT Image 1, Seedream 3.0, and Recraft V3 fail to fully follow the
prompt: these models produce incorrect interactions between the climbers. This comparison demonstrates
the strong ability of Qwen-Image to understand and precisely follow complex prompts. For the remaining
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two parts, only Qwen-Image and GPT Image 1 can accurately depict the spatial relationship between the
character and the pigeon, as well as the pocket watch and the cup handle.

5.3.3 Qualitative Results on Image Editing

To comprehensively assess the image editing (TI2I) capability of Qwen-Image, we conduct a qualitative
evaluation focusing on five key aspects: text and material editing, object addition/removal/replacement,
pose manipulation, chained editing, and novel view synthesis. For comparative analysis, we benchmark
our model against several leading instruction-based image editing models, including SeedEdit 3.0 (Wang
et al., 2025)3, FLUX.1 Kontext [Pro] (Labs et al., 2025), and GPT Image 1 [High] (OpenAI, 2025).

Text and Material Editing Figure 24 presents a qualitative comparison of text and material editing
capabilities. In the top example, which involves editing text with a complex style, Seedream 3.0 fails
to change the letter "H" to "Q", and GPT Image 1 [High] does not preserve the original style. Both
Qwen-Image and FLUX.1 Kontext [Pro] successfully modify the text while maintaining style consistency.
In the lower example, all models except FLUX.1 Kontext [Pro] accurately add the required text and
related elements. Notably, Qwen-Image is the only model that correctly generates the requested enamel
colored glass art, demonstrating superior material rendering and instruction-following ability.

Object Addition/Removal/Replacement Object addition, removal, and replacement are among the
most common tasks in instruction-based image editing. In Figure 25, we compare the performance of
various models on challenging real-world scenarios. With the exception of GPT Image 1 [High], which
often fails to maintain overall image consistency, all other models generally perform well in preserving
unedited regions. In the top case, where the task is to add both a cat and a dog in a cartoon style,
the model must ensure that the new objects match the overall artistic style. We observe that FLUX.1
Kontext [Pro] struggles with consistency when editing non-photorealistic images, while both SeedEdit
3.0 and Qwen-Image produce coherent results that align well with the desired cartoon style. For the
middle example, which involves removing all people from a crowded scene—a relatively complex
instruction—all models complete the task accurately, differing only in minor details. Additionally, we
notice occasional zoom-in and zoom-out effects across different models during editing.

Pose Manipulation Figure 26 presents a qualitative comparison of pose manipulation abilities across
different models. In the first example, only FLUX.1 Kontext [Pro] and Qwen-Image are able to preserve
fine details such as the subject’s hair strands during pose editing. In the second case, which requires
maintaining clothing consistency and scene stability during pose changes, Qwen-Image is the only model
that keeps both the background and character unchanged. Remarkably, Qwen-Image accurately infers
from the input that the person is wearing a side-slit dress over silk trousers, and faithfully reveals the silk
trousers in the standing pose. In the third example, Qwen-Image again outperforms other models by
better preserving the original pose and maintaining consistency in clothing decorations.

Chained Editing Chained editing refers to scenarios where generated images are iteratively used as
context for subsequent editing steps. In the first case of Figure 27, the task requires extracting a clothing
item and depicting the close-up of its fabric details. We select a Chinese traditional painting as the
source image. SeedEdit 3.0 and FLUX.1 Kontext [Pro] fail from the first prompt, while both GPT Image
1 [High] and Qwen-Image accurately extract the paired birds. Qwen-Image can better preserve fine
texture details against GPT Image 1 [High]. In the second case, the input image features a boat with a
double-opening stern. Both Qwen-Image and FLUX.1 Kontext [Pro] are able to preserve this structural
feature throughout the entire chained editing process. However, FLUX.1 Kontext [Pro] fails to add two
cargo ships as instructed, whereas Qwen-Image successfully completes the complete editing chain.

Novel View Synthesis Figure 28 evaluates the spatial reasoning and novel view synthesis capabilities
of different models. SeedEdit 3.0 and FLUX.1 Kontext [Pro] cannot perform view rotation well under
the same instruction. While GPT Image 1 [High] can generate new perspectives when a clear subject
is present, it fails to generalize to real-world scenes with complex multiple objects. Only Qwen-Image
maintains global consistency—including text fidelity and lighting structure—demonstrating superior
spatial and semantic coherence in complex editing tasks.

3SeedEdit 3.0 does not provide an official API, all watermarked images were obtained via their web interface.
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Input prompt
A man in a suit is standing in front of the window, looking at the bright moon outside the window. The man is 

holding a yellowed paper with handwritten words on it: "A lantern moon climbs through the silver night, 

Unfurling quiet dreams across the sky, Each star a whispered promise wrapped in light, That dawn will bloom, 

though darkness wanders by." There is a cute cat on the windowsill.

Qwen-Image

Recraft V3

GPT Image 1 [High]

Seedream 3.0

HiDream-I1-Full

Lumina-Image 2.0

Figure 18: Comparison of long English rendering capability in image generation. This case requires
rendering a long paragraph, and only Qwen-Image and GPT Image 1 [High] manage to render such a
long text clearly and almost perfectly. The other models either omit words or produce duplicates.
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Bookstore window display. A sign displays "New Arrivals This Week". Below, a shelf tag with the text "Best-Selling 
Novels Here". To the side, a colorful poster advertises "Author Meet And Greet on Saturday" with a central portrait of 
the author. There are four books on the bookshelf, namely "The light between worlds" "When stars are scattered" 
"The slient patient" "The night circus"

Qwen-Image

GPT Image 1 [High]

Seedream 3.0

HiDream-I1-Full

Input 
prompt

A slide featuring artistic, decorative shapes framing neatly arranged textual information styled as an elegant infographic. At the very center, the title "Habits for 
Emotional Wellbeing" appears clearly, surrounded by a symmetrical floral pattern. On the left upper section, "Practice Mindfulness" appears next to a minimalist 
lotus flower icon, with the short sentence, "Be present, observe without judging, accept without resisting". Next, moving downward, "Cultivate Gratitude" is written 
near an open hand illustration, along with the line, "Appreciate simple joys and acknowledge positivity daily". Further down, towards bottom-left, "Stay 
Connected" accompanied by a minimalistic chat bubble icon reads "Build and maintain meaningful relationships to sustain emotional energy". At bottom right 
corner, "Prioritize Sleep" is depicted next to a crescent moon illustration, accompanied by the text "Quality sleep benefits both body and mind". Moving upward 
along the right side, "Regular Physical Activity" is near a jogging runner icon, stating: "Exercise boosts mood and relieves anxiety". Finally, at the top right side, 
appears "Continuous Learning" paired with a book icon, stating "Engage in new skill and knowledge for growth". The slide layout beautifully balances clarity and 
artistry, guiding the viewers naturally along each text segment.

Input 
prompt

HiDream-I1-Full

Seedream 3.0

GPT Image 1 [High]

Qwen-Image

Figure 19: Comparison of complex English rendering capability in image generation. We present two
cases to illustrate the model’s ability to generate multiple English texts in different locations of the real
scene and the slide. Only Qwen-image can follow the complex prompts to successfully render the text in
reasonable location.
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Input prompt
一副典雅庄重的对联悬挂于厅堂之中，房间是个安静古典的中式布置，桌子上放着一些青花
瓷，对联上左书“义本生知人机同道善思新”，右书“通云赋智乾坤启数高志远”， 横批“智启通
义”，字体飘逸，中间挂在一着一副中国风的画作，内容是岳阳楼。

Qwen-Image

Recraft V3

GPT Image 1 [High]

Seedream 3.0

HiDream-I1-Full

Lumina-Image 2.0

Figure 20: Comparison of Chinese text rendering capability in image generation. Qwen-Image accurately
generates the expected Chinese couplet. In contrast, GPT Image 1 [high] and Seedream 3.0 miss or
generate distorted characters. While other model in comparison cannot generate correct Chinese couplets.
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宫崎骏的动漫风格。平视角拍摄，阳光下的古街热闹非凡。一个穿着青衫、手里拿着写着“阿里云”
卡片的逍遥派弟子站在中间。旁边两个小孩惊讶的看着他。左边有一家店铺挂着“云存储”的牌子，
里面摆放着发光的服务器机箱，门口两个侍卫守护者。右边有两家店铺，其中一家挂着“云计算”的
牌子，一个穿着旗袍的美丽女子正看着里面闪闪发光的电脑屏幕；另一家店铺挂着“云模型”的牌子，
门口放着一个大酒缸，上面写着“千问”，一位老板娘正在往里面倒发光的代码溶液。

Qwen-Image

Lumina-Image 2.0

Seedream 3.0

HiDream-I1-Full

Input prompt

一个穿着"QWEN"标志的T恤的中国美女正拿着黑色的马克笔面相镜头微笑。她身后的玻璃板上手
写体写着 "一、Qwen-Image的技术路线：探索视觉生成基础模型的极限，开创理解与生成一体化
的未来。二、Qwen-Image的模型特色：1、复杂文字渲染。支持中英渲染、自动布局； 2、精准
图像编辑。支持文字编辑、物体增减、风格变换。三、Qwen-Image的未来愿景：赋能专业内容创
作、助力生成式AI发展。"

Input prompt

HiDream-I1-Full

Seedream 3.0

GPT Image 1 [High]

Qwen-Image

Figure 21: Comparison of complex Chinese text rendering in image generation: the first case shows
that Qwen-Image can render text on multiple objects while maintaining consistency with the real scene,
such as aligning text with the depth and tilt of each plaque; the second case demonstrates its ability to
render structured paragraph text in a glass panel. Qwen-Image is the only model capable of accurately
rendering long text.
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Picture of twelve stuffed toys arranged evenly and neatly, four in each row, for 
a total of three rows. The first row is: rat, ox, tiger, rabbit. The second row is: 
dragon, snake, horse, sheep. The third row is: monkey, chicken, dog, pig. Each 
toy has a gentle and friendly facial expression, and the material has a soft 
fabric texture, with soft and layered colors. The background is light beige.

Qwen-Image

GPT Image 1 [High]

Seedream 3.0

HiDream-I1-Full

Input prompt

一个台球桌上放着两排台球，每排5个，第一行的台球上面分别写着“Qwen” 
“Image” “将 “于” “8” ，第二排台球上面分别写着“月” “正” “式” “发” “布” 。Input prompt

HiDream-I1-Full

Seedream 3.0

GPT Image 1 [High]

Qwen-Image

Figure 22: Comparison of multi-object modeling in image generation: Qwen-Image accurately renders
the 12 Chinese zodiac animals and materials in the first case, and handles complex bilingual text across
multiple objects in the second.
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A twisted pine trunk leans over the cliff edge, a climber woman grips the trunk 
with two hands, and her partner reaches up, holding onto the woman’s safety 
belt around her waist. Realistic photography.

Input prompt

Qwen-ImageGPT Image 1 [High] Seedream 3.0

城市动作摄影，一盏锈迹斑斑的路灯矗立在雨中的人行道上，一名跑酷运动员用
一只手挂在灯上，一只鸽子停留在运动员的鞋子上，浅景深，电影般的灯光。Input prompt

HiDream-I1-Full

Realistic still-life studio photography, a vintage wooden table supports an 
antique typewriter, a steaming porcelain coffee cup sits on top of the typewriter, 
and a small pocket watch hangs from the cup’s handle, dramatic side lighting.

Input prompt

Qwen-ImageGPT Image 1 [High] Seedream 3.0HiDream-I1-Full

Qwen-ImageGPT Image 1 [High] Seedream 3.0HiDream-I1-Full

Figure 23: Comparison of spatial relationship modeling capability in image generation. We present three
cases to demonstrate interactions involving multiple people and multiple objects. We find that both
Qwen-Image and GPT Image 1 [High] exhibit strong ability to understand relationships.
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GPT Image 1 [High]

Input Image

Qwen-Image

SeedEdit 3.0 FLUX.1 Kontext [Pro]

Input prompt

Change “Hope” to 

“Qwen”.

GPT Image 1 [High]

Input Image

Qwen-Image

SeedEdit 3.0 FLUX.1 Kontext [Pro]

Input prompt

Changed to a refrigerator

magnet, bright color,

enamel colored glass art,

cartoonish, with the words

"Qwen-Image" written on it,

depicting the image of the

doll, and decorated with

wheat, clouds, waves, etc.

on an off white background,

displayed from the front. 

Figure 24: Qualitative comparison on text and material modification. Both FLUX.1 Kontext [Pro] and
Qwen-Image are able to accurately modify text while preserving the original style. In the example below,
Qwen-Image is the only model that successfully presents the enamel material.
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GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]Input 
prompt

Put on a 

magician'

s hat

GPT Image 1 [High]

Input Image

Qwen-Image

SeedEdit 3.0 FLUX.1 Kontext [Pro]

Input prompt

Remove all the people

Add a 

dog and 

a cat 

playing 

in the 

street

GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]Input 
prompt

Figure 25: Qualitative comparison on object editing (addition, removal, and replacement): Object
editing is a relatively stable capability for all models. Qwen-Image demonstrates superior consistency in
unmodified regions and achieves better style alignment for the newly generated objects.

35



GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]

Input prompt Let her turn her head to look at the camera

Input prompt Let the person in the picture stand up, one hand on her hip, 

and the background and camera remain the same

GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]

Input prompt Generate an image of a girl sitting in a stairwell.

GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]

Figure 26: Qualitative comparison on pose manipulation. Qwen-Image is able to accurately follow
pose manipulation instructions while preserving fine details of the person (such as hair strands) and
maintaining consistency in the background (e.g., the stone steps behind the subject).
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GPT Image 1 [High]

Input Image

Qwen-Image

SeedEdit 3.0 FLUX.1 Kontext [Pro]

Input chained prompt 1:

Extract the person’s

robe product image. 

Input chained prompt 2:

show me an extreme

closeup of the fabric. 

Input Image

SeedEdit 3.0 FLUX.1 Kontext [Pro]

GPT Image 1 [High] Qwen-Image

Input chained prompt 1:

Place these two paper 

boats on the water 

surface.

Input chained prompt 2:

Pull back the camera to show 

that they are floating in the 

seawater at a dock, with two 

cargo ships in the left rear 

background.

Figure 27: Examples of two types of chained editing: extract + zoom-in (top) and placement + zoom-out
(bottom). GPT Image 1 [High] and Qwen-Image correctly understand the extract operation, but only
Qwen-Image accurately captures and magnifies the garment’s texture. In the second case, Qwen-Image
preserves the open-ended stern of the paper boat throughout the entire chained editing process.
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GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]

Input prompt Turn right 90 degrees.

Input prompt Turn right 90 degrees.

Input prompt Turn right 90 degrees.

GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]

GPT Image 1 [High]Input Image Qwen-ImageSeedEdit 3.0 FLUX.1 Kontext [Pro]

Figure 28: Qualitative comparison on novel view synthesis. We evaluate three progressively challenging
rotation tasks under the same text prompt "Turn right 90 degrees": (1) single-person rotation, (2) co-
rotation of person and background, and (3) real-world scenario. In all cases, Qwen-Image achieves the
most accurate and consistent results. While other models (e.g., GPT Image 1 [High]) handle basic subject
rotation, they fail to rotate the background or preserve scene details.
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6 Conclusion

In this paper, we introduce Qwen-Image, an image generation foundation model within the Qwen
series, achieving major advancements in both complex text rendering and precise image editing. By
constructing a comprehensive data pipeline and adopting a progressive curriculum learning strategy,
Qwen-Image substantially improves its capability to render intricate text within generated images.
Moreover, our improved multi-task training paradigm and dual-encoding mechanism significantly
enhance the consistency and quality of image editing, effectively improving both semantic coherence and
visual fidelity. Extensive experiments on public benchmarks consistently demonstrate the state-of-the-art
performance of Qwen-Image across a wide range of image generation and editing tasks. These results
underscore not only the technical robustness of Qwen-Image but also its broad applicability in real-world
multimodal scenarios, marking a significant milestone in the evolution of large foundation models.

We now turn to a deeper discussion on the broader implications and significance of Qwen-Image:

Qwen-Image as an "image generation" model, in the context of image generation, redefines the priorities
in generative modeling. Rather than merely optimizing for photorealism or aesthetic quality ("AI look"),
Qwen-Image emphasizes precise alignment between text and image—especially in the challenging
task of text rendering. We envision that by strengthening this capability in foundation models, future
interfaces can evolve from purely language-based LUIs (Language User Interfaces) to vision-language
VLUIs (Vision-Language User Interfaces). When LLMs struggle to convey visual attributes such as
color, spatial relationships, or structural layouts, a VLUI empowered by Qwen-Image can generate richly
illustrated, text-integrated imagery—enabling structured visual explanations and effective knowledge
externalization, where complex ideas are transformed into comprehensible, multimodal representations.

Qwen-Image as an image "generation" model, in the context of image understanding, demonstrates
that generative frameworks can effectively perform classical understanding tasks. For instance, in
depth estimation, although Qwen-Image does not surpass specialized discriminative models, it achieves
performance remarkably close to them. Crucially, while traditional expert models rely on discriminative
understanding—directly mapping inputs to outputs without modeling underlying distributions—Qwen-
Image leverages generative understanding: it first constructs a holistic distribution over visual content,
from which depth is naturally inferred. This shift from direct inference to distributional reasoning opens
new avenues for unified multimodal understanding.

Qwen-Image as an "image" generation model, in the context of 3D and video generation, shows strong
generalization beyond 2D image synthesis. Through the lens of image editing, we apply Qwen-Image
to novel view synthesis and find that, as a general-purpose image foundation model, it outperforms
dedicated 3D models in several challenging rendering scenarios, exhibiting exceptional consistency across
views. In pose editing tasks, Qwen-Image maintains remarkable coherence in both subject identity and
background structure despite significant motion changes—an essential requirement for video generation.
Moreover, unlike most image generation approaches that rely on image VAEs, we adopt a video VAE for
visual representation. While this introduces greater modeling complexity, it aligns with our core objective:
to build a foundation model that generalizes across diverse visual modalities, not just static images.

Qwen-Image as a "visual generation" model, in the context of integrated understanding and generation,
advances the vision of seamless integration between perception and creation. We argue that achieving
true understanding-generation unity rests on three foundational pillars: (1) mastering understanding,
(2) mastering generation, and (3) mastering their synergistic integration. As the first work in the Qwen
series dedicated to visual generation, Qwen-Image fills a critical gap in the second pillar—generation
capability—complementing Qwen2.5-VL, which excels in visual understanding (the first pillar). Together,
they form a balanced foundation for the next generation of multimodal AI, paving the way toward Visual-
Language Omni systems that are not only capable of perceiving and reasoning but also of generating
text-rich, visually coherent imagery—where language and vision are seamlessly fused into illustrative,
readable, and semantically faithful visual outputs.

In summary, Qwen-Image is more than a state-of-the-art image generation model—it represents a
paradigm shift in how we conceptualize and build multimodal foundation models. Its contributions
extend beyond technical benchmarks, challenging the community to rethink the roles of generative
models in perception, interface design, and cognitive modeling. By emphasizing complex text rendering
in image generation and addressing classical understanding tasks such as depth estimation through the
lens of image editing, Qwen-Image points toward a future in which: (1) generative models do not merely
produce images, but genuinely understand them; and (2) understanding models go beyond passive
discrimination, achieving comprehension through intrinsic generative processes. As we continue to scale
and refine such systems, the boundary between visual understanding and generation will blur further,
paving the way for truly interactive, intuitive, and intelligent multimodal agents.
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